spss因子分析 spss因子分析教程
时间:2022-05-15 15:52:59
spss是一款由IBM公司推出的软件分析软件,如果我们利用spss软件进行数据结构处理的时候,可以使用因子分析的方法来简化数据结构,将具有错综复杂关系的变量综合为数据较少的因子,达到信息损失最少就可以完成对变量的分类。
研究问题时尽可能多的收集资料,便于对问题有充分了解,这样确实便于全面、精确地描述事物,实际数据建模中,有些变量不一定可以真正发挥作用,还可能加大计算工作量,所以要因子分析。对于高纬变量和海量数据是不可忽略的问题。收集到的变量数据通常之间存在一定的相关性,变量间的信息高度重叠和高度相关给统计方法带来困难,例如,在多元线性回归分析中,若变量之间有较强的相关性,则会对回归方程参数估计带来困难,致使参数不准确,模型不可用。
1、因子相关性的检验:方法有相关系数矩阵、反映像相关矩阵、巴特利特球度检验、KMO检验。
2、因子提取和因子载荷矩阵的求解:基于主成分模型的主成分分析法、基于因子分析模型的主轴因子法、极大似然法、最小二乘法、a因子提取法、映像分析法。主成分分析法能够为因子分析提供初始解,因子分析是主成分分析结果的延伸和拓展。
3、因子命名、旋转:在因子载荷矩阵中,多行情况,遇到变量与多个因子有较大的相关关系,即变量需要多个因子共同解释;多列情况,一个因子可以同时解释多个变量。说明一个因子不能单独代表原有的一个变量,因子模糊不清,而实际情况是对因子有清醒认识,所以因子旋转。必不可少,尽量使一个变量在较少的几个因子上有比较高的载荷。
4、计算因子得分:因子得分为因子分析的最终体现,计算各因子在每个样本上的具体数值,即为因子得分,形成的变量称为因子变量,在接下来的分析中因子变量可代替原有的变量进行数据建模,对问题降维或简化处理。
输出结果分析:
借助相关系数矩阵、反映像相关矩阵、巴特利特球度检验和KMO检验方法分析。观察大部分相关系数都较高,线性关系较强,可以提取公共因子,适合因子分析。在KMO中,概率为0.000小于显著性水平,拒绝原假设,与单位矩阵有显著差异,KMO为0.882,说明适合因子分析。
每组的列向量含义,特征值、方差贡献率、累计方差贡献率。第二列表示提取两个因子,共同解释84.259%,丢失的信息较少。第三列表示旋转后的因子,总的方差贡献率没有改变,就是说没有影响原有的共同度,重新分配各个因子解释原有变量的方差,改变各个因子的方差贡献率。
碎石图:纵坐标为特征值,横坐标为因子个数。特征值越小则对原有变量的贡献很小,可以忽略,所以提取两个也算是可以的。
成分矩阵:结果是某个变量等于两个因子与对应系数相乘后相加的结果。观察可知,第一个因子与所有变量的相关性程度高,与第二个不高,含义模糊,不利于命名,所以因子要旋转。
因子命名解释:采用方差极 * 对因子载荷矩阵实行正交旋转以使因子具有命名解释性。可以指定按照第一因子载荷降序的顺序输出旋转后的因子载荷。见图,联营、股份、集体、国有在第一因子有较高载荷,可解释为内部投资经济单位,其他、外商、港澳在第二个的载荷高,解释为外来投资经济单位。观察因子协方差矩阵,两个因子的线性相关性几乎没有,符合因子分析的效果。
以上便是利用spss进行因子分析的过程,如果你看过本篇教程后还有不明白的地方,欢迎在下面留言区留言。