Python matplotlib seaborn绘图教程详解

作者:渴望成为寂寞胜者 时间:2021-03-12 03:23:07 

一、seaborn概述

Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图。详情请查阅官网:seaborn

二、数据整理

import seaborn as sns
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
import pandas as pd
from datetime import datetime,timedelta
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
from datetime import datetime
films=['穿过寒冬拥抱你','反贪风暴5:最终章','李茂扮太子','误杀2','以年为单位的恋爱','黑客帝国:矩阵重启','雄狮少年','魔法满屋','汪汪队立大功大电影','爱情神话']
regions=['中国','英国','澳大利亚','美国','美国','中国','英国','澳大利亚','美国','美国']
bos=['61,181','44,303','42,439','22,984','13,979','61,181','44,303','41,439','20,984','19,979']
persons=['31','23','56','17','9','31','23','56','17','9']
prices=['51','43','56','57','49','51','43','56','57','49']
showdate=['2022-12-03','2022-12-05','2022-12-01','2022-12-02','2022-11-05','2022-12-03','2022-12-05','2022-12-01','2022-12-02','2022-11-05']
ftypes=['剧情','动作','喜剧','剧情','剧情','爱情','动作','动画','动画','动画']
points=['8.1','9.0','7.9','6.7','3.8','8.1','9.0','7.9','6.7','3.8']
filmdescript={
   'ftypes':ftypes,
   'bos':bos,
   'prices':prices,
   'persons':persons,
   'regions':regions,
   'showdate':showdate,
   'points':points
}
import numpy as np
import pandas as pd
cnbo2021top5=pd.DataFrame(filmdescript,index=films)
cnbo2021top5[['prices','persons']]=cnbo2021top5[['prices','persons']].astype(int)
cnbo2021top5['bos']=cnbo2021top5['bos'].str.replace(',','').astype(int)
cnbo2021top5['showdate']=cnbo2021top5['showdate'].astype('datetime64')
cnbo2021top5['points']=cnbo2021top5['points'].apply(lambda x:float(x) if x!='' else 0)
cnbo2021top5

Python matplotlib seaborn绘图教程详解

# 常用调色盘
r_hex = '#dc2624'     # red,       RGB = 220,38,36
dt_hex = '#2b4750'    # dark teal, RGB = 43,71,80
tl_hex = '#45a0a2'    # teal,      RGB = 69,160,162
r1_hex = '#e87a59'    # red,       RGB = 232,122,89
tl1_hex = '#7dcaa9'   # teal,      RGB = 125,202,169
g_hex = '#649E7D'     # green,     RGB = 100,158,125
o_hex = '#dc8018'     # orange,    RGB = 220,128,24
tn_hex = '#C89F91'    # tan,       RGB = 200,159,145
g50_hex = '#6c6d6c'   # grey-50,   RGB = 108,109,108
bg_hex = '#4f6268'    # blue grey, RGB = 79,98,104
g25_hex = '#c7cccf'   # grey-25,   RGB = 199,204,207
color=['#dc2624' ,'#2b4750','#45a0a2','#e87a59','#7dcaa9','#649E7D','#dc8018','#C89F91','#6c6d6c','#4f6268','#c7cccf']
sns.set_palette(color)

01 折线图

def sinplot(flip=1):
   x = np.linspace(0, 14, 100)
   for i in range(1, 7):
       plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
sinplot()
# 对两种画图进行比较
fig = plt.figure()
sns.set()
sinplot()

Python matplotlib seaborn绘图教程详解

plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
plt.xlabel("电影名称")
plt.ylabel("电影票房")
sns.lineplot(data=cnbo2021top5[['bos']])
plt.xticks(rotation=45)

Python matplotlib seaborn绘图教程详解

02 柱形图

cnbo2021top5ftgb=cnbo2021top5.groupby(['ftypes'])['bos','persons','prices','points'].mean()
cnbo2021top5ftgb=cnbo2021top5ftgb.reset_index().replace()
cnbo2021top5ftgb

Python matplotlib seaborn绘图教程详解

### 02 条形图
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
sns.barplot(x=cnbo2021top5ftgb['ftypes'],y=cnbo2021top5ftgb['persons'])
plt.xlabel("电影类型")
plt.ylabel("场均人次")
plt.xticks(rotation=45)
plt.show()

Python matplotlib seaborn绘图教程详解

03 直方图

### 03 直方图
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
sns.histplot(x=cnbo2021top5['bos'],bins=15) # x=cnbo2021top5ftgb['ftypes'],y=cnbo2021top5ftgb['persons']
plt.xlabel("电影类型")
plt.ylabel("场均人次")
plt.xticks(rotation=45)
plt.show()

Python matplotlib seaborn绘图教程详解

三、绘图

上面的数据只有十部电影,而下面的数据是我整理出来的电影数据:

Excel:300部电影数据整理

import pandas as pd
cnboo=pd.read_excel("cnboNPPD1.xlsx")
cnboo

Python matplotlib seaborn绘图教程详解

01 设定调色盘

# 设定调色盘
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11)) # 表示11种颜色

Python matplotlib seaborn绘图教程详解

02 柱状图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(25,20))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.barplot(x='TYPE',
           y='PRICE',
           hue='TYPE',
           data=cnboo)

Python matplotlib seaborn绘图教程详解

03 技术图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(15,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.countplot(x='TYPE',data=cnboo)

Python matplotlib seaborn绘图教程详解

04 点图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(15,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.pointplot(x='TYPE',y='PRICE',data=cnboo)
plt.show()

Python matplotlib seaborn绘图教程详解

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(25,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.pointplot(x='TYPE',y='PRICE',hue='REGION',data=cnboo)
plt.show()

Python matplotlib seaborn绘图教程详解

05 箱型图

### 05 箱型图
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.boxplot(x='TYPE',y='PERSONS',hue='REGION',data=cnboo) # ,markers=['^','o'],linestyles=['-','--']
plt.show()
# 图中的单个点代表在此数据当中的异常值

Python matplotlib seaborn绘图教程详解

06 小提琴图

### 06 小提琴图
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.violinplot(x='TYPE',y='PRICE',hue='REGION',data=cnboo) # ,markers=['^','o'],linestyles=['-','--']
plt.show()

Python matplotlib seaborn绘图教程详解

绘制横着的小提琴图:

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title('电影票房')
plt.xticks(rotation=45)
sns.violinplot(x='PERSONS',y='PRICE',hue='REGION',data=cnboo,orient='h')
plt.show()

Python matplotlib seaborn绘图教程详解

来源:https://blog.csdn.net/wxfighting/article/details/123454072

标签:Python,matplotlib,seaborn
0
投稿

猜你喜欢

  • python检测远程服务器tcp端口的方法

    2021-02-18 22:49:44
  • Python enumerate()计数器简化循环

    2022-07-31 22:15:43
  • http协议详解(超详细)

    2023-01-20 23:27:31
  • pytorch 图像预处理之减去均值,除以方差的实例

    2022-04-20 13:43:45
  • 吴恩达机器学习练习:神经网络(反向传播)

    2021-12-13 05:13:25
  • 基于python3 类的属性、方法、封装、继承实例讲解

    2022-12-09 17:54:02
  • 通过XSL转换XML文件步骤

    2008-01-27 16:03:00
  • ADO.NET 连接数据库字符串小结(Oracle、SqlServer、Access、ODBC)

    2024-01-22 07:43:47
  • 设计表单的标签和输入区

    2009-04-27 16:16:00
  • 批量获取及验证HTTP代理的Python脚本

    2023-11-19 12:10:34
  • python logging类库使用例子

    2023-10-31 11:17:11
  • pythonfor循环中range与len区别

    2023-06-22 03:17:10
  • python random库的简单使用demo

    2023-03-03 04:31:32
  • 打造通用ASP.NET数据分页控件

    2007-08-18 13:27:00
  • OpenCV制作Mask图像掩码的案例

    2023-09-20 16:34:04
  • PHP中重启php-fpm的几种方法汇总

    2023-06-12 21:05:24
  • 瞬间的设计(四)【碳酸饮料会】

    2009-12-23 13:56:00
  • 在pycharm中显示python画的图方法

    2023-07-28 09:44:39
  • Django 构建模板form表单的两种方法

    2021-07-01 23:44:41
  • 基于Python实现智能停车场车牌识别计费系统

    2021-05-23 07:44:22
  • asp之家 网络编程 m.aspxhome.com