pandas 数据索引与选取的实现方法
作者:罗兵 时间:2021-07-09 17:37:44
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。
其对应使用的方法如下:
一. 行,列 --> df[]
二. 区域 --> df.loc[], df.iloc[], df.ix[]
三. 单元格 --> df.at[], df.iat[]
下面开始练习:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))
1. df[]:
一维
行维度:
整数切片、标签切片、<布尔数组>
列维度:
标签索引、标签列表、Callable
df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行
df['A']
df[['A','B']]
df[lambda df: df.columns[0]] # Callable
2. df.loc[]
二维,先行后列
行维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable
df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]
df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0] # a行大于0的列
df.loc[:, df.iloc[0]>0] # 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]
df.A.loc[lambda s: s > 0]
3. df.iloc[]
二维,先行后列
行维度:
整数索引、整数切片、整数列表、<布尔数组>
列维度:
整数索引、整数切片、整数列表、<布尔数组>、Callable
df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :] #× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] #×
df.iloc[df.iloc[:,0]>0, :] #×
df.iloc[lambda _df: [0, 1], :]
df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] #×
df.iloc[:, df.iloc[0]>0] #×
df.iloc[:, lambda _df: [0, 1]]
4. df.ix[]
二维,先行后列
行维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable
列维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable
df.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :]
df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]
df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]]
df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]
5. df.at[]
精确定位单元格
行维度:
标签索引
列维度:
标签索引
df.at['a', 'A']
6. df.iat[]
精确定位单元格
行维度:
整数索引
列维度:
整数索引
df.iat[0, 0]
来源:https://www.cnblogs.com/hhh5460/p/5595616.html
标签:pandas,索引,选取
0
投稿
猜你喜欢
node实现mock-plugin中间件的方法
2024-05-13 10:05:59
Vue.js实现分页查询功能
2024-05-02 16:41:29
Python实现识别图像中人物的示例代码
2023-11-10 01:59:19
windows 下python+numpy安装实用教程
2022-06-26 09:52:26
Java读取数据库表的示例代码
2024-01-15 05:41:08
讲解SQL Server 2005数据库的同义词Bug
2008-11-28 14:22:00
Python爬虫实战之虎牙视频爬取附源码
2021-04-02 01:23:27
ORACLE 常用的SQL语法和数据对象
2009-02-26 10:58:00
Python中的zipfile模块使用详解
2023-02-26 22:44:37
python可视化text()函数使用详解
2023-08-31 19:48:15
去除python中的字符串空格的简单方法
2022-11-01 10:33:22
Python之split函数的深入理解
2022-12-22 19:58:25
Python学习笔记之抓取某只基金历史净值数据实战案例
2021-08-14 20:28:13
在VScode中引用自定义模块问题
2023-08-13 03:50:37
Python子进程subpocess原理及用法解析
2021-10-11 19:18:27
ACCESS中Field对象的标题属性
2008-11-20 17:44:00
FrontPage服务器扩展
2008-03-05 13:05:00
Python打造虎年祝福神器的示例代码
2021-01-08 17:23:43
对python 通过ssh访问数据库的实例详解
2024-01-16 07:32:12
Django contrib auth authenticate函数源码解析
2022-04-27 01:49:23