如何利用Python识别图片中的文字详解

作者:克金森沐沐 时间:2021-02-07 21:05:30 

一、Tesseract

文字识别是ORC的一部分内容,ORC的意思是光学字符识别,通俗讲就是文字识别。Tesseract是一个用于文字识别的工具,我们结合Python使用可以很快的实现文字识别。但是在此之前我们需要完成一个繁琐的工作。

(1)Tesseract的安装及配置

Tesseract的安装我们可以移步到该网址 https://digi.bib.uni-mannheim.de/tesseract/,我们可以看到如下界面:

如何利用Python识别图片中的文字详解

有很多版本供大家选择,大家可以根据自己的需求选择。其中w32表示32位系统,w64表示64位系统,大家选择合适的版本即可,可能下载速度比较慢,安装时我们需要知道我们安装的位置,将安装目录配置到系统path变量当中,我们路径是D:\CodeField\Tesseract-OCR

如何利用Python识别图片中的文字详解

我们右击我的电脑/此电脑->属性->高级系统设置->环境变量->Path->编辑->新建然后将我们的路径复制进去即可。添加好系统变量后后我们还需要依次点确定,这样才算配置好了。

(2)下载语言包

Tesseract默认是不支持中文的,如果想要识别中文或者其它语言需要下载相应的语言包,下载地址如下:https://tesseract-ocr.github.io/tessdoc/Data-Files ,进入网站后我们往下翻:

如何利用Python识别图片中的文字详解

其中有两个中文语言包,一个Chinese-Simplified和Chinese-Traditional,它们分别是简体中文和繁体中文,我们选择需要的下载即可。下载完成后我们需要放到Tesseract的路径下的tessdata目录下,我们路径是D:\CodeField\Tesseract-OCR\tessdata

(3)其它模块下载

除了上面的步骤,我们还需要下载两个模块:


pip install pytesseract
pip install pillow

第一个是用于文字识别的,第二个是用于图片读取的。接下来我们就可以进行文字识别了。

二、文字识别

(1)单张图片识别

接下来的操作就要简单的多,下面是我们要识别的图片:

如何利用Python识别图片中的文字详解

接下来就是我们文字识别的代码:


import pytesseract
from PIL import Image
# 读取图片
im = Image.open('sentence.jpg')
# 识别文字
string = pytesseract.image_to_string(im)
print(string)

识别结果如下:

Do not go gentle into that good night!

因为默认是支持英文的,所以我们可以直接识别,但是当我们要识别中文或其它语言时就需要做些修改:


import pytesseract
from PIL import Image
# 读取图片
im = Image.open('sentence.png')
# 识别文字,并指定语言
string = pytesseract.image_to_string(im, lang='chi_sim')
print(string)

在识别时,我们设置lang='chi_sim',也就是把语言设置为简体中文,只有当你的tessdata目录下有简体中文包该设置才会生效。下面是我们用来识别的图片:

如何利用Python识别图片中的文字详解

识别结果如下:

不 要 温 顺 的 走 进 那 个 良 夜

图片内容被准确识别出来了。有一点我们需要知道,在我们将语言设置为简体中文或其它语言后,Tesseract还是可以识别出英文字符。

(2)批量图片识别

既然我们把单张图片识别列出来了,就肯定还有批量图片识别这个功能,这就需要我们准备一个txt文件了,比如我有文件,text.txt内容如下:


sentence1.jpg
sentence2.jpg

我们将代码修改为如下:


import pytesseract
# 识别文字
string = pytesseract.image_to_string('text.txt', lang='chi_sim')
print(string)

但是这样自己写一个txt文件难免有些麻烦,因此我们又可以进行如下修改:


import os
import pytesseract
# 文字图片的路径
path = 'text_img/'
# 获取图片路径列表
imgs = [path + i for i in os.listdir(path)]
# 打开文件
f = open('text.txt', 'w+', encoding='utf-8')
# 将各个图片的路径写入text.txt文件当中
for img in imgs:
   f.write(img + '\n')
# 关闭文件
f.close()
# 文字识别
string = pytesseract.image_to_string('text.txt', lang='chi_sim')
print(string)

这样我们只需要传入一个文字图片的根目录就可以批量进行识别了。在测试过程中发现,Tesseract对手写体、行楷等飘逸的字体识别不准确,对一些复杂的字识别也有待提升。但是宋体、印刷体等笔画严谨的字体识别准确率很高。另外如果图片的倾斜大于一定的角度,识别结果也会有很大差别。

来源:https://blog.csdn.net/program_G/article/details/117302451

标签:Python,识别,图片,文字
0
投稿

猜你喜欢

  • 详解python日期时间处理

    2021-08-20 17:07:53
  • 详解如何利用amoeba(变形虫)实现mysql数据库读写分离

    2024-01-18 12:03:05
  • Python flask与fastapi性能测试方法介绍

    2022-12-07 00:10:17
  • Python基于argparse与ConfigParser库进行入参解析与ini parser

    2022-09-16 01:56:39
  • Python 数据可视化pyecharts的使用详解

    2021-07-07 20:29:55
  • python中sample函数的介绍与使用

    2021-02-02 15:38:56
  • Matplotlib 生成不同大小的subplots实例

    2022-12-22 03:16:26
  • Python中的pandas表格模块、文件模块和数据库模块

    2024-01-28 05:32:45
  • PHP中str_split()函数的用法讲解

    2023-06-05 09:43:15
  • 使用python实现ftp的文件读写方法

    2022-02-06 11:25:03
  • SQL联合查询inner join、outer join和cross join的区别详解

    2024-01-14 21:33:41
  • 动态导航设计

    2008-09-21 13:40:00
  • 你的网页“面目全非”过吗?

    2010-07-02 16:24:00
  • Python网页解析利器BeautifulSoup安装使用介绍

    2021-06-12 05:00:00
  • DWCS3-CSS布局之一CSS规则大纲

    2008-06-11 18:48:00
  • Python之两种模式的生产者消费者模型详解

    2021-07-31 17:44:02
  • python如何正确的操作字符串

    2023-12-28 02:46:30
  • 选择一个优秀正文字体的15个技巧

    2008-03-20 13:36:00
  • numpy数组切片的使用

    2023-10-30 04:36:24
  • Mootools 1.2教程(12)——用Drag.Move实现拖拽和拖放

    2008-12-05 12:29:00
  • asp之家 网络编程 m.aspxhome.com