OpenCV全景图像拼接的实现示例
作者:乐亦亦乐 时间:2021-12-04 00:36:09
本文主要介绍了OpenCV全景图像拼接的实现示例,分享给大家,具体如下:
left_01.jpg
right_01.jpg
Stitcher.py
import numpy as np
import cv2
class Stitcher:
#拼接函数
def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):
#获取输入图片
(imageB, imageA) = images
#检测A、B图片的SIFT关键特征点,并计算特征描述子
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# 匹配两张图片的所有特征点,返回匹配结果
M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
# 如果返回结果为空,没有匹配成功的特征点,退出算法
if M is None:
return None
# 否则,提取匹配结果
# H是3x3视角变换矩阵
(matches, H, status) = M
# 将图片A进行视角变换,result是变换后图片
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
self.cv_show('result', result)
# 将图片B传入result图片最左端
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
self.cv_show('result', result)
# 检测是否需要显示图片匹配
if showMatches:
# 生成匹配图片
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
# 返回结果
return (result, vis)
# 返回匹配结果
return result
def cv_show(self,name,img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def detectAndDescribe(self, image):
# 将彩色图片转换成灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 建立SIFT生成器
descriptor = cv2.xfeatures2d.SIFT_create()
# 检测SIFT特征点,并计算描述子
(kps, features) = descriptor.detectAndCompute(image, None)
# 将结果转换成NumPy数组
kps = np.float32([kp.pt for kp in kps])
# 返回特征点集,及对应的描述特征
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
# 建立暴力匹配器
matcher = cv2.BFMatcher()
# 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
for m in rawMatches:
# 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
# 存储两个点在featuresA, featuresB中的索引值
matches.append((m[0].trainIdx, m[0].queryIdx))
# 当筛选后的匹配对大于4时,计算视角变换矩阵
if len(matches) > 4:
# 获取匹配对的点坐标
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# 计算视角变换矩阵
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
# 返回结果
return (matches, H, status)
# 如果匹配对小于4时,返回None
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# 初始化可视化图片,将A、B图左右连接到一起
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# 联合遍历,画出匹配对
for ((trainIdx, queryIdx), s) in zip(matches, status):
# 当点对匹配成功时,画到可视化图上
if s == 1:
# 画出匹配对
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# 返回可视化结果
return vis
ImageStiching.py
from Stitcher import Stitcher
import cv2
# 读取拼接图片
imageA = cv2.imread("left_01.jpg")
imageB = cv2.imread("right_01.jpg")
# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
# 显示所有图片
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
如遇以下错误:
cv2.error: OpenCV(3.4.3) C:\projects\opencv-python\opencv_contrib\modules\xfeatures2d\src\sift.cpp:1207: error: (-213:The function/feature is not implemented) This algorithm is patented and is excluded in this configuration; Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function ‘cv::xfeatures2d::SIFT::create'
如果运行OpenCV程序提示算法版权问题可以通过安装低版本的opencv-contrib-python解决:
pip install --user opencv-contrib-python==3.3.0.10
来源:https://blog.csdn.net/qq_41251963/article/details/103855359
标签:OpenCV,图像拼接
0
投稿
猜你喜欢
numpy数组广播的机制
2023-08-15 11:41:31
Git回退代码到某次commit的实现方法
2022-07-09 15:08:26
比较详细PHP生成静态页面教程
2023-10-14 18:54:31
Django分页器的用法详解
2021-04-20 21:54:14
利用Python求阴影部分的面积实例代码
2021-10-05 15:18:03
浅析MySQL并行复制
2024-01-13 02:54:10
略谈美国雅虎首页改版
2009-07-26 18:34:00
mysql三种批量增加的性能分析
2024-01-23 06:04:29
python 遗传算法求函数极值的实现代码
2023-08-29 11:36:11
python实现从一组颜色中找出与给定颜色最接近颜色的方法
2023-04-23 01:48:44
set rs=server.CreateObject("adodb.recordset") 的中文详细说明
2011-03-06 11:21:00
ASP中如何判断一个字符是不是汉字
2008-05-04 12:47:00
详解pandas使用drop_duplicates去除DataFrame重复项参数
2021-09-12 12:36:26
如何检测Oracle的ODBC是否连接成功?
2009-11-24 20:31:00
标志设计如何正确使用字体
2009-02-16 15:41:00
python求质数的3种方法
2023-02-12 04:07:54
python一行代码合并了162个Word文件
2022-07-24 04:20:57
解决BN和Dropout共同使用时会出现的问题
2023-05-08 14:08:19
如何在Python3中使用telnetlib模块连接网络设备
2022-03-11 12:57:33
python中使用zip函数出现<zip object at 0x02A9E418>错误的原因
2021-02-24 02:37:14