Matplotlib条形图之分组条形图和堆叠条形图详解
作者:你这个阶段睡得着的 时间:2021-08-10 15:16:24
分组条形图
拓展一下问题复杂度:使用水平条形图展示每位员工前三个月的销售额。此时,我们需要将每位员工的销售额按月分组,分别绘制条形图进行展示。
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
member = [u'小红', u'小王', u'小李', u'小张']
sales_jan = [30, 42, 25, 35] # 一月销售额
sales_feb = [60, 55, 10, 27] # 二月销售额
sales_mar = [40, 20, 5, 68] # 三月销售额
bar_width = 0.2 # 设置分组条形的宽度
# 绘图
plt.bar(range(4), sales_jan, label=u'一月', width=bar_width, align='center', color='steelblue', alpha=0.7)
# 也可以使用numpy模块的arange()函数构造横坐标
plt.bar(np.arange(4) + bar_width, sales_feb, label=u'二月', color='indianred', alpha=0.7, width=bar_width)
plt.bar(np.arange(4) + bar_width * 2, sales_mar, label=u'三月', color='green', alpha=0.7, width=bar_width)
# 添加Y轴标签
plt.ylabel(u'月度销售额(万元)')
# 添加标题
plt.title(u'员工第一季度销售额对比')
# 添加刻度标签
plt.xticks(np.arange(4) + bar_width, member)
# 添加图例
plt.legend()
plt.xlim(-0.5, 4.5)
plt.show()
分组条形图比简单条形图的复杂之处在于,在放数据 x
轴坐标和刻度位置时,需要进行额外的计算和调整。在执行坐标的计算时,推荐使用 numpy ,因为它支持广播机制,向量化的算术运算更加简单。例如,上例中在设置第二个和第三个条形的 x
轴坐标时,我们使用了 np.arange(4) + bar_width
和 np.arange(4) + bar_width * 2
,而利用 Python 列表实现将十分复杂。
堆叠条形图
堆叠条形图是分组条形图展示的另一种形式,它把分类的数据堆叠在一起,显得更简约紧密,同时提供了求和信息。在实现上,绘制的思路与条形图相似,不过前者是垂直偏移,后者是水平偏移。
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
member = [u'小红', u'小王', u'小李', u'小张']
sales_jan = [30, 42, 25, 35] # 一月销售额
sales_feb = [60, 55, 10, 27] # 二月销售额
sales_mar = [40, 20, 5, 68] # 三月销售额
bar_width = 0.2 # 设置分组条形的宽度
# 绘图
plt.bar(np.arange(4), sales_jan, label=u'一月', color='steelblue', alpha=0.7)
plt.bar(np.arange(4), sales_feb, bottom=sales_jan, label=u'二月', color='indianred', alpha=0.7)
plt.bar(np.arange(4), sales_mar, bottom=np.array(sales_jan) + np.array(sales_feb), label=u'三月', color='green',
alpha=0.7)
# 添加Y轴标签
plt.ylabel(u'月度销售额(万元)')
# 添加标题
plt.title(u'员工第一季度销售额对比')
# 添加刻度标签
plt.xticks(np.arange(4), member)
# 添加图例
plt.legend()
plt.xlim(-0.5, 4.5)
plt.show()
这里有两点非常关键:一是 botom
选项的使用让数据在该基础之上有一个偏移;二是 NumPy 模块 array()
函数的使用,将列表类型的数据转换为 ndarray
,以便元素级别(向量化)运算。
来源:https://blog.csdn.net/XQC_KKK/article/details/123329119
标签:Matplotlib,分组条形图,堆叠条形图
0
投稿
猜你喜欢
Golang自定义结构体转map的操作
2024-05-08 10:21:39
TypeScript类型检查详谈及火爆原因
2022-01-24 11:48:41
Python手机与电脑游戏脚本的编写方法
2023-11-28 18:31:44
简述Asp与XML之间的关系
2008-04-17 10:46:00
MySQL常用分库分表方案汇总
2024-01-18 10:51:14
python递归法实现简易连连看小游戏
2023-04-18 12:41:02
如何更改Linux(CentOS)系统下的MySQL数据库目录位置
2024-01-24 15:07:00
vue实现菜单切换功能
2024-05-03 15:12:08
javascript中caller和callee详解
2024-04-29 13:38:05
用Python做一个哔站小姐姐词云跳舞视频
2022-09-17 12:32:30
python与mysql数据库交互的实现
2024-01-15 03:24:23
Numpy 数组操作之元素添加、删除和修改的实现
2023-06-23 22:09:03
Python持续监听文件变化代码实例
2021-10-20 06:19:19
golang微服务框架基础Gin基本路由使用详解
2023-07-23 10:31:19
python next()和iter()函数原理解析
2023-04-05 21:58:50
OpenCV实现机器人对物体进行移动跟随的方法实例
2023-04-20 08:50:49
matplotlib 对坐标的控制,加图例注释的操作
2021-06-12 16:28:46
MySQL模式 Strict Mode知识点详解
2024-01-27 20:50:41
Javascript:window对象出身何处
2007-08-28 15:16:00
Python中使用gflags实例及原理解析
2023-01-28 20:25:24