Django中celery的使用项目实例
作者:宠乖仪 时间:2021-01-07 15:53:14
1、django应用Celery
django框架请求/响应的过程是同步的,框架本身无法实现异步响应。
但是我们在项目过程中会经常会遇到一些耗时的任务, 比如:发送邮件、发送短信、大数据统计等等,这些操作耗时长,同步执行对用户体验非常不友好,那么在这种情况下就需要实现异步执行。
异步执行前端一般使用ajax,后端使用Celery。
2 、项目应用
django项目应用celery,主要有两种任务方式,一是异步任务(发布者任务),一般是web请求,二是定时任务。
celery组成
Celery是由Python开发、简单、灵活、可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。Celery侧重于实时操作,但对调度支持也很好,其每天可以处理数以百万计的任务。特点:
简单:熟悉celery的工作流程后,配置使用简单
高可用:当任务执行失败或执行过程中发生连接中断,celery会自动尝试重新执行任务
快速:一个单进程的celery每分钟可处理上百万个任务
灵活:几乎celery的各个组件都可以被扩展及自定制
Celery由三部分构成:
消息中间件(Broker):官方提供了很多备选方案,支持RabbitMQ、Redis、Amazon SQS、MongoDB、Memcached 等,官方推荐RabbitMQ
任务执行单元(Worker):任务执行单元,负责从消息队列中取出任务执行,它可以启动一个或者多个,也可以启动在不同的机器节点,这就是其实现分布式的核心
结果存储(Backend):官方提供了诸多的存储方式支持:RabbitMQ、 Redis、Memcached,SQLAlchemy, Django ORM、Apache Cassandra、Elasticsearch等
架构如下:
工作原理:
任务模块Task包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往消息队列,而定时任务由Celery Beat进程周期性地将任务发往消息队列;
任务执行单元Worker实时监视消息队列获取队列中的任务执行;
Woker执行完任务后将结果保存在Backend中;
本文使用的是redis数据库作为消息中间件和结果存储数据库
1.异步任务redis
1.安装库
pip install celery
pip install redis
2.celery.py
在主项目目录下,新建 celery.py 文件:
import os
import django
from celery import Celery
from django.conf import settings
# 设置系统环境变量,安装django,必须设置,否则在启动celery时会报错
# celery_study 是当前项目名
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celery_study.settings')
django.setup()
celery_app = Celery('celery_study')
celery_app.config_from_object('django.conf:settings')
celery_app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)
注意:是和settings.py文件同目录,一定不能建立在项目根目录,不然会引起 celery 这个模块名的命名冲突
同时,在主项目的init.py中,添加如下代码:
from .celery import celery_app
__all__ = ['celery_app']
3.settings.py
在配置文件中配置对应的redis配置:
# Broker配置,使用Redis作为消息中间件
BROKER_URL = 'redis://127.0.0.1:6379/0'
# BACKEND配置,这里使用redis
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
# 结果序列化方案
CELERY_RESULT_SERIALIZER = 'json'
# 任务结果过期时间,秒
CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24
# 时区配置
CELERY_TIMEZONE='Asia/Shanghai'
# 指定导入的任务模块,可以指定多个
#CELERY_IMPORTS = (
# 'other_dir.tasks',
#)
注意:所有配置的官方文档:Configuration and defaults — Celery 5.2.0b3 documentation
4.tasks.py
在子应用下建立各自对应的任务文件tasks.py(必须是tasks.py这个名字,不允许修改)
from celery import shared_task
@shared_task
def add(x, y):
return x + y
@shared_task
def mul(x, y):
return x * y
@shared_task
def xsum(numbers):
return sum(numbers)
5.调用任务
from .tasks import *
# Create your views here.
def task_add_view(request):
add.delay(100,200)
return HttpResponse(f'调用函数结果')
6.启动celery
pip install eventlet
celery -A celery_study worker -l debug -P eventlet
注意 :celery_study是项目名
使用redis时,有可能会出现如下类似的异常
AttributeError: 'str' object has no attribute 'items'
这是由于版本差异,需要卸载已经安装的python环境中的 redis 库,重新指定安装特定版本(celery4.x以下适用 redis2.10.6, celery4.3以上使用redis3.2.0以上):
xxxxxxxxxx pip install redis==2.10.6
7.获取任务结果
在 views.py 中,通过 AsyncResult.get() 获取结果
from celery import result
def get_result_by_taskid(request):
task_id = request.GET.get('task_id')
# 异步执行
ar = result.AsyncResult(task_id)
if ar.ready():
return JsonResponse({'status': ar.state, 'result': ar.get()})
else:
return JsonResponse({'status': ar.state, 'result': ''})
AsyncResult类的常用的属性和方法:
state: 返回任务状态,等同status;
task_id: 返回任务id;
result: 返回任务结果,同get()方法;
ready(): 判断任务是否执行以及有结果,有结果为True,否则False;
info(): 获取任务信息,默认为结果;
wait(t): 等待t秒后获取结果,若任务执行完毕,则不等待直接获取结果,若任务在执行中,则wait期间一直阻塞,直到超时报错;
successful(): 判断任务是否成功,成功为True,否则为False;
2.定时任务
在第一步的异步任务的基础上,进行部分修改即可
1.settings.py
from celery.schedules import crontab
CELERYBEAT_SCHEDULE = {
'mul_every_30_seconds': {
# 任务路径
'task': 'celery_app.tasks.mul',
# 每30秒执行一次
'schedule': 5,
'args': (14, 5)
}
}
说明(更多内容见文档:Periodic Tasks — Celery 5.2.0b3 documentation):
task:任务函数
schedule:执行频率,可以是整型(秒数),也可以是timedelta对象,也可以是crontab对象,也可以是自定义类(继承celery.schedules.schedule)
args:位置参数,列表或元组
kwargs:关键字参数,字典
options:可选参数,字典,任何 apply_async() 支持的参数
relative:默认是False,取相对于beat的开始时间;设置为True,则取设置的timedelta时间
在task.py中设置了日志
from celery import shared_task
import logging
logger = logging.getLogger(__name__))
@shared_task
def mul(x, y):
logger.info('___mul__'*10)
return x * y
2.启动celery
(两个cmd)分别启动worker和beat
celery -A worker celery_study -l debug -P eventlet
celery beat -A celery_study -l debug
3.任务绑定
Celery可通过task绑定到实例获取到task的上下文,这样我们可以在task运行时候获取到task的状态,记录相关日志等
方法:
在装饰器中加入参数 bind=True
在task函数中的第一个参数设置为self
在task.py 里面写
from celery import shared_task
import logging
logger = logging.getLogger(__name__)
# 任务绑定
@shared_task(bind=True)
def add(self,x, y):
logger.info('add__-----'*10)
logger.info('name:',self.name)
logger.info('dir(self)',dir(self))
return x + y
其中:self对象是celery.app.task.Task的实例,可以用于实现重试等多种功能
from celery import shared_task
import logging
logger = logging.getLogger(__name__)
# 任务绑定
@shared_task(bind=True)
def add(self,x, y):
try:
logger.info('add__-----'*10)
logger.info('name:',self.name)
logger.info('dir(self)',dir(self))
raise Exception
except Exception as e:
# 出错每4秒尝试一次,总共尝试4次
self.retry(exc=e, countdown=4, max_retries=4)
return x + y
启动celery
celery -A worker celery_study -l debug -P eventlet
4.任务钩子
Celery在执行任务时,提供了钩子方法用于在任务执行完成时候进行对应的操作,在Task源码中提供了很多状态钩子函数如:on_success(成功后执行)、on_failure(失败时候执行)、on_retry(任务重试时候执行)、after_return(任务返回时候执行)
方法:通过继承Task类,重写对应方法即可,
from celery import Task
class MyHookTask(Task):
def on_success(self, retval, task_id, args, kwargs):
logger.info(f'task id:{task_id} , arg:{args} , successful !')
def on_failure(self, exc, task_id, args, kwargs, einfo):
logger.info(f'task id:{task_id} , arg:{args} , failed ! erros: {exc}')
def on_retry(self, exc, task_id, args, kwargs, einfo):
logger.info(f'task id:{task_id} , arg:{args} , retry ! erros: {exc}')
# 在对应的task函数的装饰器中,通过 base=MyHookTask 指定
@shared_task(base=MyHookTask, bind=True)
def add(self,x, y):
logger.info('add__-----'*10)
logger.info('name:',self.name)
logger.info('dir(self)',dir(self))
return x + y
启动celery
celery -A worker celery_study -l debug -P eventlet
5.任务编排
在很多情况下,一个任务需要由多个子任务或者一个任务需要很多步骤才能完成,Celery也能实现这样的任务,完成这类型的任务通过以下模块完成:
group: 并行调度任务
chain: 链式任务调度
chord: 类似group,但分header和body2个部分,header可以是一个group任务,执行完成后调用body的任务
map: 映射调度,通过输入多个入参来多次调度同一个任务
starmap: 类似map,入参类似*args
chunks: 将任务按照一定数量进行分组
文档:Next Steps — Celery 5.2.0b3 documentation
1.group
urls.py:
path('primitive/', views.test_primitive),
views.py:
from .tasks import *
from celery import group
def test_primitive(request):
# 创建10个并列的任务
lazy_group = group(add.s(i, i) for i in range(10))
promise = lazy_group()
result = promise.get()
return JsonResponse({'function': 'test_primitive', 'result': result})
说明:
通过task函数的 s 方法传入参数,启动任务
上面这种方法需要进行等待,如果依然想实现异步的方式,那么就必须在tasks.py中新建一个task方法,调用group,示例如下:
tasks.py:
@shared_task
def group_task(num):
return group(add.s(i, i) for i in range(num))().get()
urls.py:
path('first_group/', views.first_group),
views.py:
def first_group(request):
ar = tasks.group_task.delay(10)
return HttpResponse('返回first_group任务,task_id:' + ar.task_id)
2.chain
默认上一个任务的结果作为下一个任务的第一个参数
def test_primitive(request):
# 等同调用 mul(add(add(2, 2), 5), 8)
promise = chain(tasks.add.s(2, 2), tasks.add.s(5), tasks.mul.s(8))()
# 72
result = promise.get()
return JsonResponse({'function': 'test_primitive', 'result': result})
3.chord
任务分割,分为header和body两部分,hearder任务执行完在执行body,其中hearder返回结果作为参数传递给body
def test_primitive(request):
# header: [3, 12]
# body: xsum([3, 12])
promise = chord(header=[tasks.add.s(1,2),tasks.mul.s(3,4)],body=tasks.xsum.s())()
result = promise.get()
return JsonResponse({'function': 'test_primitive', 'result': result})
6、celery管理和监控
celery通过flower组件实现管理和监控功能 ,flower组件不仅仅提供监控功能,还提供HTTP API可实现对woker和task的管理
官网:flower · PyPI
文档:Flower - Celery monitoring tool — Flower 1.0.1 documentation
安装flower
pip install flower
启动flower
flower -A celery_study --port=5555
说明:
-A:项目名
--port: 端口号
访问
在浏览器输入:http://127.0.0.1:5555
通过api操作
curl http://127.0.0.1:5555/api/workers
来源:https://blog.csdn.net/qq_53582111/article/details/120207740