python深度学习tensorflow安装调试教程

作者:denny402 时间:2021-06-28 23:03:51 

用过一段时间的caffe后,对caffe有两点感受:1、速度确实快; 2、 太不灵活了。

深度学习技术一直在发展,但是caffe的更新跟不上进度,也许是维护团队的关系:CAFFE团队成员都是业余时间在维护和更新。导致的结果就是很多新的技术在caffe里用不了,比如RNN, LSTM,batch-norm等。当然这些现在也算是旧的东西了,也许caffe已经有了,我已经很久没有关注caffe的新版本了。它的不灵活之处就是新的东西很难自己扩展,只能等版本更新,这就比较尴尬。

因此,只学caffe一个工具看来是不行了,还得学习其它工具。该学什么呢?当然是如日中天的tensorflow了,毕竟它背后的团队很强大,功能也比较齐全,更新也很及时。所谓技多不压身,学了caffe后再学tensorflow,两者结合着用。

关于tensorflow的介绍,此处不再啰嗦。关于gpu的安装与配置,此处也不涉及。

一、安装anaconda

tensorflow是基于python脚本语言的,因此需要安装python, 当然还需要安装numpy、scipy、six、matplotlib等几十个扩展包。如果一个个安装,装到啥时候去?(我曾经光安装scipy就装了一天。。。)

不过现在有了集成环境anaconda,安装就方便了。python的大部分扩展包, 都集成在anaconda里面了,因此只需要装这一个东西就行了。

先到https://www.anaconda.com/products/distribution 下载anaconda, 现在的版本有python2.7版本和python3.5版本,下载好对应版本、对应系统的anaconda,它实际上是一个sh脚本文件,大约300M-400M左右。推荐使用linux版的python 2.7版本,因为tensorflow中的有些东西不支持python3.5(如cPickle)。

python深度学习tensorflow安装调试教程

下载成功后,在终端执行(2.7版本):

# bash Anaconda2-4.1.1-Linux-x86_64.sh

或者3.5 版本:

# bash Anaconda3-4.1.1-Linux-x86_64.sh

在安装的过程中,会问你安装路径,直接回车默认就可以了。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,这个一定要输入yes

安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容。在终端可以输入

conda info 来查询安装信息

输入conda list 可以查询你现在安装了哪些库,常用的python, numpy, scipy名列其中。如果你还有什么包没有安装上,可以运行

conda install ***  来进行安装(***代表包名称),如果某个包版本不是最新的,运行 conda update *** 就可以了。

二、安装tensorflow

先在终端执行:

anaconda search -t conda tensorflow

搜索一下有哪些tensorflow安装包,通过查看版本,选择最高的版本安装。比如我看到是0.10.0rc0版本是最高的,如下图:

python深度学习tensorflow安装调试教程

因此,执行下面代码来查看详细信息:

anaconda show jjhelmus/tensorflow

它就会告诉你,怎么来安装这个包,在终端执行:

conda install --channel https://conda.anaconda.org/jjhelmus tensorflow

然后输入"y",进行安装。

三、调试

安装成功与否,我们可以测试一下。

在终端输入python,进入python编译环境,然后输入:

import tensorflow as tf

引包tensorflow包,如果没有报错,则安装成功,否则就有问题。

然后可以输入

tf.__version__
tf.__path__

查看tensorflow的安装版本和安装路径(左右各两根下横线)。

来源:https://www.cnblogs.com/denny402/p/5849416.html

标签:python,深度学习,tensorflow,安装调试
0
投稿

猜你喜欢

  • sql语句查询重复的数据(最新推荐)

    2024-01-13 08:01:23
  • 在Go语言中使用JSON的方法

    2024-04-25 15:26:04
  • sqlserver巧用row_number和partition by分组取top数据

    2024-01-28 12:33:39
  • phpMyAdmin下载、安装和使用入门

    2007-06-15 11:00:00
  • python简单实现基数排序算法

    2023-11-10 06:27:27
  • django重新生成数据库中的某张表方法

    2024-01-23 01:14:45
  • Python的Twisted框架上手前所必须了解的异步编程思想

    2021-05-02 14:21:44
  • python实现xml转json文件的示例代码

    2023-09-29 23:52:50
  • 浅谈python中统计计数的几种方法和Counter详解

    2023-02-22 12:24:01
  • 使用Django实现把两个模型类的数据聚合在一起

    2023-11-11 23:37:42
  • Python爬取网站图片并保存的实现示例

    2023-06-05 18:01:29
  • 教你使用Python提取视频中的美女图片

    2021-05-21 22:41:50
  • 一篇文章带你了解Python和Java的正则表达式对比

    2021-08-17 20:24:35
  • 戴着锁链跳舞

    2009-08-20 13:06:00
  • Scrapy爬虫实例讲解_校花网

    2023-03-02 14:46:39
  • python3+selenium自动化测试框架详解

    2022-01-29 18:26:01
  • asp内置对象ObjectContext详解

    2007-09-18 13:16:00
  • elementUI el-table二次封装的详细实例

    2024-05-03 15:12:00
  • 使用Python的Flask框架构建大型Web应用程序的结构示例

    2022-05-01 01:35:35
  • Python的输入,输出和标识符详解

    2021-03-26 21:50:42
  • asp之家 网络编程 m.aspxhome.com