深入理解 Python 中的多线程 新手必看

作者:Akshar Raaj 时间:2021-10-09 16:11:45 

示例1
我们将要请求五个不同的url:
单线程


import time
import urllib2

defget_responses():
 urls=[
   ‘http://www.baidu.com',
   ‘http://www.amazon.com',
   ‘http://www.ebay.com',
   ‘http://www.alibaba.com',
   ‘https://www.jb51.net'
 ]
 start=time.time()
 forurlinurls:
   printurl
   resp=urllib2.urlopen(url)
   printresp.getcode()
 print”Elapsed time: %s”%(time.time()-start)

get_responses()

输出是:
http://www.baidu.com200
http://www.amazon.com200
http://www.ebay.com200
http://www.alibaba.com200
https://www.jb51.net200
Elapsed time:3.0814409256

解释:
url顺序的被请求
除非cpu从一个url获得了回应,否则不会去请求下一个url
网络请求会花费较长的时间,所以cpu在等待网络请求的返回时间内一直处于闲置状态。
多线程


import urllib2
import time
from threading import Thread

classGetUrlThread(Thread):
 def__init__(self, url):
   self.url=url
   super(GetUrlThread,self).__init__()

defrun(self):
   resp=urllib2.urlopen(self.url)
   printself.url, resp.getcode()

defget_responses():
 urls=[
   ‘http://www.baidu.com',
   ‘http://www.amazon.com',
   ‘http://www.ebay.com',
   ‘http://www.alibaba.com',
   ‘https://www.jb51.net'
 ]
 start=time.time()
 threads=[]
 forurlinurls:
   t=GetUrlThread(url)
   threads.append(t)
   t.start()
 fortinthreads:
   t.join()
 print”Elapsed time: %s”%(time.time()-start)

get_responses()

输出:
https://www.jb51.net200
http://www.baidu.com200
http://www.amazon.com200
http://www.alibaba.com200
http://www.ebay.com200
Elapsed time:0.689890861511

解释:

意识到了程序在执行时间上的提升
我们写了一个多线程程序来减少cpu的等待时间,当我们在等待一个线程内的网络请求返回时,这时cpu可以切换到其他线程去进行其他线程内的网络请求。
我们期望一个线程处理一个url,所以实例化线程类的时候我们传了一个url。
线程运行意味着执行类里的run()方法。
无论如何我们想每个线程必须执行run()。
为每个url创建一个线程并且调用start()方法,这告诉了cpu可以执行线程中的run()方法了。
我们希望所有的线程执行完毕的时候再计算花费的时间,所以调用了join()方法。
join()可以通知主线程等待这个线程结束后,才可以执行下一条指令。
每个线程我们都调用了join()方法,所以我们是在所有线程执行完毕后计算的运行时间。

关于线程:

cpu可能不会在调用start()后马上执行run()方法。
你不能确定run()在不同线程建间的执行顺序。
对于单独的一个线程,可以保证run()方法里的语句是按照顺序执行的。
这就是因为线程内的url会首先被请求,然后打印出返回的结果。

实例2

我们将会用一个程序演示一下多线程间的资源竞争,并修复这个问题。


from threading import Thread

#define a global variable
some_var=0

classIncrementThread(Thread):
 defrun(self):
   #we want to read a global variable
   #and then increment it
   globalsome_var
   read_value=some_var
   print”some_var in %s is %d”%(self.name, read_value)
   some_var=read_value+1
   print”some_var in %s after increment is %d”%(self.name, some_var)

defuse_increment_thread():
 threads=[]
 foriinrange(50):
   t=IncrementThread()
   threads.append(t)
   t.start()
 fortinthreads:
   t.join()
 print”After 50 modifications, some_var should have become 50″
 print”After 50 modifications, some_var is %d”%(some_var,)

use_increment_thread()

多次运行这个程序,你会看到多种不同的结果。
解释:
有一个全局变量,所有的线程都想修改它。
所有的线程应该在这个全局变量上加 1 。
有50个线程,最后这个数值应该变成50,但是它却没有。
为什么没有达到50?
在some_var是15的时候,线程t1读取了some_var,这个时刻cpu将控制权给了另一个线程t2。
t2线程读到的some_var也是15
t1和t2都把some_var加到16
当时我们期望的是t1 t2两个线程使some_var + 2变成17
在这里就有了资源竞争。
相同的情况也可能发生在其它的线程间,所以出现了最后的结果小于50的情况。
解决资源竞争


from threading import Lock, Thread
lock=Lock()
some_var=0

classIncrementThread(Thread):
 defrun(self):
   #we want to read a global variable
   #and then increment it
   globalsome_var
   lock.acquire()
   read_value=some_var
   print”some_var in %s is %d”%(self.name, read_value)
   some_var=read_value+1
   print”some_var in %s after increment is %d”%(self.name, some_var)
   lock.release()

defuse_increment_thread():
 threads=[]
 foriinrange(50):
   t=IncrementThread()
   threads.append(t)
   t.start()
 fortinthreads:
   t.join()
 print”After 50 modifications, some_var should have become 50″
 print”After 50 modifications, some_var is %d”%(some_var,)

use_increment_thread()

再次运行这个程序,达到了我们预期的结果。
解释:
Lock 用来防止竞争条件
如果在执行一些操作之前,线程t1获得了锁。其他的线程在t1释放Lock之前,不会执行相同的操作
我们想要确定的是一旦线程t1已经读取了some_var,直到t1完成了修改some_var,其他的线程才可以读取some_var
这样读取和修改some_var成了逻辑上的原子操作。
实例3
让我们用一个例子来证明一个线程不能影响其他线程内的变量(非全局变量)。
time.sleep()可以使一个线程挂起,强制线程切换发生。


from threading import Thread
import time

classCreateListThread(Thread):
 defrun(self):
   self.entries=[]
   foriinrange(10):
     time.sleep(1)
     self.entries.append(i)
   printself.entries

defuse_create_list_thread():
 foriinrange(3):
   t=CreateListThread()
   t.start()

use_create_list_thread()

运行几次后发现并没有打印出争取的结果。当一个线程正在打印的时候,cpu切换到了另一个线程,所以产生了不正确的结果。我们需要确保print self.entries是个逻辑上的原子操作,以防打印时被其他线程打断。
我们使用了Lock(),来看下边的例子。


from threading import Thread, Lock
import time

lock=Lock()

classCreateListThread(Thread):
 defrun(self):
   self.entries=[]
   foriinrange(10):
     time.sleep(1)
     self.entries.append(i)
   lock.acquire()
   printself.entries
   lock.release()

defuse_create_list_thread():
 foriinrange(3):
   t=CreateListThread()
   t.start()

use_create_list_thread()

这次我们看到了正确的结果。证明了一个线程不可以修改其他线程内部的变量(非全局变量)。

标签:Python,多线程
0
投稿

猜你喜欢

  • js贪吃蛇游戏实现思路和源码

    2024-04-10 11:03:57
  • 优化mysql数据库的经验总结

    2024-01-17 23:56:24
  • vue实现选中效果

    2024-05-11 09:12:56
  • SQL数据库十四种案例介绍

    2024-01-14 14:50:42
  • 详解Django+Uwsgi+Nginx 实现生产环境部署

    2022-11-10 10:37:41
  • golang设置http response响应头与填坑记录

    2024-05-21 10:22:24
  • 教你如何在pycharm中使用less

    2021-08-12 13:59:32
  • Python各种扩展名区别点整理

    2023-10-14 21:23:01
  • go语言中使用timer的常用方式

    2024-05-10 10:57:49
  • 禁止拷贝网页内容的js代码

    2024-04-25 13:07:50
  • Pyecharts 动态地图 geo()和map()的安装与用法详解

    2023-08-16 17:07:34
  • JavaScript命令模式原理与用法实例详解

    2024-04-23 09:32:04
  • python中的 zip函数详解及用法举例

    2023-04-16 15:31:36
  • FrontPage XP设计教程5——表单的设计

    2008-10-11 12:35:00
  • Django之模板层的实现代码

    2022-11-10 11:40:54
  • Python中的type与isinstance的区别详解

    2021-12-06 19:30:57
  • 刚学完怎么用Python实现定时任务,转头就跑去撩妹!

    2022-07-09 06:50:02
  • 解决Python 进程池Pool中一些坑

    2023-12-21 00:24:31
  • Python爬虫开发与项目实战

    2022-04-21 03:10:32
  • Python中的 pass 占位语句

    2023-02-21 20:45:12
  • asp之家 网络编程 m.aspxhome.com