Python自动化爬取天眼查数据的实现
作者:end for time 时间:2021-01-10 23:28:27
首先要注册一个账号密码,通过账号密码登录,并且滑块验证,自动输入搜索关键词,进行跳转翻页爬取数据,并保存到Excel文件中。
代码运行时,滑块验证经常不通过,被吃掉,但是发现打包成exe运行没有这个问题,100%成功登录。如果大家知道这个问题麻烦请与我分享,谢谢!
废话不多说直接上代码
# coding=utf-8
from selenium import webdriver
import time
from PIL import Image, ImageGrab
from io import BytesIO
from selenium.webdriver.common.action_chains import ActionChains
import os
import sys
import re
import xlwt
import urllib
import datetime
'''
用于天眼查自动登录,解决滑块验证问题
'''
# 获取项目根目录
def app_path():
if hasattr(sys, 'frozen'):
return os.path.dirname(os.path.dirname(os.path.dirname(sys.executable))) #使用pyinstaller打包后的exe目录
return os.path.dirname(__file__)
app_path = app_path()
ready_list = []
#设置表格样式
def set_style(name,height,bold=False):
style = xlwt.XFStyle()
font = xlwt.Font()
font.name = name
# font.bold = bold
font.color_index = 4
font.height = height
style.font = font
return style
# 写excel
f = xlwt.Workbook()
sheet1 = f.add_sheet('企查查数据',cell_overwrite_ok=True)
row0 = ["企业名称","法定代表人","注册资本","成立日期","电话","邮箱","地址"]
for i in range(0, len(row0)):
sheet1.write(0, i, row0[i], set_style('Times New Roman', 220, True))
# 写列
def write_col(data, row, col):
for i in range(0,len(data)):
sheet1.write(row,col,data[i],set_style('Times New Roman',220,True))
row = row + 1
def parse_save_data(all_list):
row = 1
for data in all_list:
# 公司名称
name_list = re.findall(r'<div class="info">(.*?)</div>',data)
print(name_list)
# 标签
tag_list = re.findall(r'<div class="tag-list">(.*)</div><div class="info row text-ellipsis">', data)
tags = []
for list in tag_list:
tag = re.findall(r'<div class="tag-common -primary -new">(.*?)</div>', list)
tags.append(tag)
# print(tags)
# 法定代表人
legal_list = re.findall(r'<a title="(.*?)" class="legalPersonName link-click"',data)
# print(legal_list)
# 注册资本
registered_capital_list = re.findall(r'注册资本:<span title="(.*?)">',data)
# print(registered_capital_list)
# 成立日期
date_list = re.findall(r'成立日期:<span title="(.*?)">',data)
# print(date_list)
# 电话
tel_list = re.findall(r'<div class="triangle" style=""></div><div class=""></div></div></div><span>(.*?)</span>',data)
# print(tel_list)
# 邮箱
email_list = re.findall(r'邮箱:</span><span>(.*?)</span>',data)
# print(email_list)
# 地址
adress_list = re.findall(r'地址:</span><span>(.*?)</span>',data)
# print(adress_list)
write_col(name_list,row,0)
# write_col(tags,1)
write_col(legal_list,row,1)
write_col(registered_capital_list,row,2)
write_col(date_list,row,3)
write_col(tel_list,row,4)
write_col(email_list,row,5)
write_col(adress_list,row,6)
row = row + len(name_list)
s = str([datetime.datetime.now()][-1])
name = '/天眼查数据' + s[:10] + s[-6:] + '.xls'
f.save(app_path + name)
def get_track(distance):
"""
根据偏移量获取移动轨迹
:param distance: 偏移量
:return: 移动轨迹
"""
# 移动轨迹
track = []
# 当前位移
current = 0
# 减速阈值
mid = distance * 2 / 5
# 计算间隔
t = 0.2
# 初速度
v = 1
while current < distance:
if current < mid:
# 加速度为正2
a = 5
else:
# 加速度为负3
a = -2
# 初速度v0
v0 = v
# 当前速度v = v0 + at
v = v0 + a * t
# 移动距离x = v0t + 1/2 * a * t^2
move = v0 * t + 1 / 2 * a * t * t
# 当前位移
current += move
# 加入轨迹
track.append(round(move))
return track
def autologin(account, password):
count = 0
global driver,page,keywords
driver.get('https://www.tianyancha.com/?jsid=SEM-BAIDU-PP-SY-000873&bd_vid=7864822754227867779')
time.sleep(3)
try:
driver.find_element_by_xpath('//*[@id="tyc_banner_close"]').click()
except:
pass
driver.find_element_by_xpath('//div[@class="nav-item -home -p10"]/a').click()
time.sleep(3)
# 这里点击密码登录时用id去xpath定位是不行的,因为这里的id是动态变化的,所以这里换成了class定位
driver.find_element_by_xpath('.//div[@class="sign-in"]/div/div[2]').click()
time.sleep(1)
accxp = './/input[@id="mobile"]'
pasxp = './/input[@id="password"]'
driver.find_element_by_xpath(accxp).send_keys(account)
driver.find_element_by_xpath(pasxp).send_keys(password)
clixp = './/div[@class="sign-in"]/div[2]/div[2]'
driver.find_element_by_xpath(clixp).click()
# 点击登录之后开始截取验证码图片
time.sleep(2)
img = driver.find_element_by_xpath('/html/body/div[10]/div[2]/div[2]/div[1]/div[2]/div[1]')
time.sleep(0.5)
# 获取图片位子和宽高
location = img.location
size = img.size
# 返回左上角和右下角的坐标来截取图片
top, bottom, left, right = location['y'], location['y'] + size['height'], location['x'], location['x'] + size[
'width']
# 截取第一张图片(无缺口的)
screenshot = driver.get_screenshot_as_png()
screenshot = Image.open(BytesIO(screenshot))
captcha1 = screenshot.crop((left, top, right, bottom))
print('--->', captcha1.size)
captcha1.save('captcha1.png')
# 截取第二张图片(有缺口的)
driver.find_element_by_xpath('/html/body/div[10]/div[2]/div[2]/div[2]/div[2]').click()
time.sleep(4)
img1 = driver.find_element_by_xpath('/html/body/div[10]/div[2]/div[2]/div[1]/div[2]/div[1]')
time.sleep(0.5)
location1 = img1.location
size1 = img1.size
top1, bottom1, left1, right1 = location1['y'], location1['y'] + size1['height'], location1['x'], location1['x'] + \
size1['width']
screenshot = driver.get_screenshot_as_png()
screenshot = Image.open(BytesIO(screenshot))
captcha2 = screenshot.crop((left1, top1, right1, bottom1))
captcha2.save('captcha2.png')
# 获取偏移量
left = 55 # 这个是去掉开始的一部分
for i in range(left, captcha1.size[0]):
for j in range(captcha1.size[1]):
# 判断两个像素点是否相同
pixel1 = captcha1.load()[i, j]
pixel2 = captcha2.load()[i, j]
threshold = 60
if abs(pixel1[0] - pixel2[0]) < threshold and abs(pixel1[1] - pixel2[1]) < threshold and abs(
pixel1[2] - pixel2[2]) < threshold:
pass
else:
left = i
print('缺口位置', left)
# 减去缺口位移
left -= 52
# 开始移动
track = get_track(left)
print('滑动轨迹', track)
# track += [5,4,5,-6, -3,5,-2,-3, 3,6,-5, -2,-2,-4] # 滑过去再滑过来,不然有可能被吃
# 拖动滑块
slider = driver.find_element_by_xpath('/html/body/div[10]/div[2]/div[2]/div[2]/div[2]')
ActionChains(driver).click_and_hold(slider).perform()
for x in track:
ActionChains(driver).move_by_offset(xoffset=x, yoffset=0).perform()
time.sleep(0.2)
ActionChains(driver).release().perform()
time.sleep(1)
try:
if driver.find_element_by_xpath('/html/body/div[10]/div[2]/div[2]/div[2]/div[2]'):
print('能找到滑块,重新试')
# driver.delete_all_cookies()
# driver.refresh()
# autologin(driver, account, password)
else:
print('login success')
except:
print('login success')
time.sleep(0.2)
driver.find_element_by_xpath('.//input[@id="home-main-search"]').send_keys(keywords)
driver.find_element_by_xpath('.//div[@class="input-group home-group"]/div[1]').click()
# 爬数据
data = driver.find_element_by_xpath('.//div[@class="result-list sv-search-container"]').get_attribute('innerHTML')
count = count + 1
# 添加待解析数据
ready_list.append(data)
while count < page:
# 点击下一页
# driver.find_element_by_xpath('./ul[@class="pagination"]]/li/a[@class="num -next"]').click()
url = 'https://www.tianyancha.com/search/p{}?key={}'.format(count + 1,urllib.parse.quote(keywords))
driver.get(url)
time.sleep(2)
data = driver.find_element_by_xpath('.//div[@class="result-list sv-search-container"]').get_attribute('innerHTML')
count = count + 1
ready_list.append(data)
# 解析并写数据
parse_save_data(ready_list)
print('获取数据完毕')
# if __name__ == '__main__':
# driver_path = 'C:/Program Files (x86)/Google/Chrome/Application/chromedriver.exe'
# chromeoption = webdriver.ChromeOptions()
# chromeoption.add_argument('--headless')
# chromeoption.add_argument('user-agent='+user_agent)
keywords = input('请输入关键词:')
account = input('请输入查天眼账号:')
password = input('请输入查天眼密码:')
page = int(input('请输入获取页数:'))
driver = webdriver.Chrome()
driver.maximize_window()
driver.implicitly_wait(10)
print('开始获取数据。。。')
autologin(account, password)
打包成exe(注意site-packages要换成自己python包的目录)
pyinstaller main.py -p D:\Anaconda3\Lib\site-packages
最终运行dist目录下的exe
注意事项
由于天眼查没有开会员只能查看到4页内容,所以需要开会员,这个想要绕过就需要另外去研究,毕竟是要充钱付费,破解也没那么简单
来源:https://blog.csdn.net/qq_36767214/article/details/117843296
标签:Python,自动化,爬取
0
投稿
猜你喜欢
Python爬取数据保存为Json格式的代码示例
2022-10-13 17:11:36
vue打包npm run build时候界面报错的解决
2024-05-10 14:18:52
python实现扫雷游戏的示例
2023-04-14 12:07:21
Python批量裁剪图片的思路详解
2023-05-11 03:55:59
Python Requests 基础入门
2022-01-19 10:58:36
精妙的SQL语句
2024-01-20 09:29:38
Mysql auto_increment 重新计数(让id从1开始)
2024-01-25 17:04:54
详解python函数的闭包问题(内部函数与外部函数详述)
2023-01-22 20:53:01
Python查询缺失值的4种方法总结
2023-10-29 13:42:08
JavaScript 数组的 uniq 方法
2007-12-07 18:28:00
Kibo 用于处理键盘事件的Javascript工具库
2024-04-10 10:45:53
MySQL数据库高级数据操作之新增数据
2024-01-18 17:46:38
sogou地图API用法实例教程
2024-04-16 10:30:08
vue 引用自定义ttf、otf、在线字体的方法
2024-04-30 10:18:47
对比分析BN和dropout在预测和训练时区别
2022-09-05 11:46:55
python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结
2021-06-20 20:47:41
Ubuntu20下的Django安装的方法步骤
2022-05-01 09:07:24
Django实现jquery select2带搜索的下拉框
2022-04-20 18:50:58
Windows8下安装Python的BeautifulSoup
2022-05-30 15:03:06
ASP中的301跳转和302跳转
2008-08-06 18:40:00