Python 并行化执行详细解析

作者:Chandler_river 时间:2021-09-23 22:20:52 

前言:

并行编程比程序编程困难,除非正常编程需要创建大量数据,计算耗时太长,物理行为模拟困难

例子:N体问题

物理前提:

  • 牛顿定律

  • 时间离散运动方程

Python 并行化执行详细解析

普通计算方法

import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
Ns = [2**i for i in range(1,10)]
runtimes = []
def remove_i(x,i):
   "从所有粒子中去除本粒子"
   shape = (x.shape[0]-1,)+x.shape[1:]
   y = np.empty(shape,dtype=float)
   y[:i] = x[:i]
   y[i:] = x[i+1:]
   return y
def a(i,x,G,m):
   "计算加速度"
   x_i = x[i]
   x_j = remove_i(x,i)
   m_j = remove_i(m,i)
   diff = x_j - x_i
   mag3 = np.sum(diff**2,axis=1)**1.5
   result = G * np.sum(diff * (m_j / mag3)[:,np.newaxis],axis=0)
   return result
def timestep(x0,v0,G,m,dt):
   N = len(x0)
   x1 = np.empty(x0.shape,dtype=float)
   v1 = np.empty(v0.shape,dtype=float)
   for i in range(N):
       a_i0 = a(i,x0,G,m)
       v1[i] = a_i0 * dt + v0[i]
       x1[i] = a_i0 * dt**2 + v0[i] * dt + x0[i]
   return x1,v1
def initial_cond(N,D):
   x0 = np.array([[1,1,1],[10,10,10]])
   v0 = np.array([[10,10,1],[0,0,0]])
   m = np.array([10,10])
   return x0,v0,m
def stimulate(N,D,S,G,dt):
   fig = plt.figure()
   ax = Axes3D(fig)
   x0,v0,m = initial_cond(N,D)
   for s in range(S):
       x1,v1 = timestep(x0,v0,G,m,dt)
       x0,v0 = x1,v1
       t = 0
       for i in x0:
           ax.scatter(i[0],i[1],i[2],label=str(s*dt),c=["black","green","red"][t])
           t += 1
       t = 0
   plt.show()
start = time.time()
stimulate(2,3,3000,9.8,1e-3)
stop = time.time()
runtimes.append(stop - start)

效果图

Python 并行化执行详细解析

Python 并行化执行

首先我们给出一个可以用来写自己的并行化程序的,额,一串代码

import datetime
import multiprocessing as mp
def accessional_fun():
   f = open("accession.txt","r")
   result = float(f.read())
   f.close()
   return result
def final_fun(name, param):
   result = 0
   for num in param:
       result += num + accessional_fun() * 2
   return {name: result}
if __name__ == '__main__':
   start_time = datetime.datetime.now()
   num_cores = int(mp.cpu_count())
   print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2")
   print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G")
   print("请你再次检查你的程序是否已经改成了适合并行运算的样子")
   pool = mp.Pool(num_cores)
   param_dict = {'task1': list(range(10, 300)),
                 'task2': list(range(300, 600)),
                 'task3': list(range(600, 900)),
                 'task4': list(range(900, 1200)),
                 'task5': list(range(1200, 1500)),
                 'task6': list(range(1500, 1800)),
                 'task7': list(range(1800, 2100)),
                 'task8': list(range(2100, 2400)),
                 'task9': list(range(2400, 2700)),
                 'task10': list(range(2700, 3000))}
   results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()]
   results = [p.get() for p in results]
   end_time = datetime.datetime.now()
   use_time = (end_time - start_time).total_seconds()
   print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒")
   print(results)

运行结果:如下:

Python 并行化执行详细解析

accession.txt 里的内容是2.5     这就是一个累加的问题,每次累加的时候都会读取文件中的2.5

如果需要运算的问题是类似于累加的问题,也就是可并行运算的问题,那么才好做出并行运算的改造

再举一个例子

import math
import time
import multiprocessing as mp
def final_fun(name, param):
   result = 0
   for num in param:
       result += math.cos(num) + math.sin(num)
   return {name: result}
if __name__ == '__main__':
   start_time = time.time()
   num_cores = int(mp.cpu_count())
   print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2")
   print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G")
   print("请你再次检查你的程序是否已经改成了适合并行运算的样子")
   pool = mp.Pool(num_cores)
   param_dict = {'task1': list(range(10, 3000000)),
                 'task2': list(range(3000000, 6000000)),
                 'task3': list(range(6000000, 9000000)),
                 'task4': list(range(9000000, 12000000)),
                 'task5': list(range(12000000, 15000000)),
                 'task6': list(range(15000000, 18000000)),
                 'task7': list(range(18000000, 21000000)),
                 'task8': list(range(21000000, 24000000)),
                 'task9': list(range(24000000, 27000000)),
                 'task10': list(range(27000000, 30000000))}
   results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()]
   results = [p.get() for p in results]
   end_time = time.time()
   use_time = end_time - start_time
   print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒")
   result = 0
   for i in range(0,10):
       result += results[i].get("task"+str(i+1))
   print(result)
   start_time = time.time()
   result = 0
   for i in range(10,30000000):
       result += math.cos(i) + math.sin(i)
   end_time = time.time()
   print("单进程计算 共消耗: " + "{:.2f}".format(end_time - start_time) + " 秒")
   print(result)

运行结果:

Python 并行化执行详细解析

力学问题改进:

import numpy as np
import time
from mpi4py import MPI
from mpi4py.MPI import COMM_WORLD
from types import FunctionType
from matplotlib import pyplot as plt
from multiprocessing import Pool
def remove_i(x,i):
   shape = (x.shape[0]-1,) + x.shape[1:]
   y = np.empty(shape,dtype=float)
   y[:1] = x[:1]
   y[i:] = x[i+1:]
   return y
def a(i,x,G,m):
   x_i = x[i]
   x_j = remove_i(x,i)
   m_j = remove_i(m,i)
   diff = x_j - x_i
   mag3 = np.sum(diff**2,axis=1)**1.5
   result = G * np.sum(diff * (m_j/mag3)[:,np.newaxis],axis=0)
   return result

def timestep(x0,v0,G,m,dt,pool):
   N = len(x0)
   takes = [(i,x0,v0,G,m,dt) for i in range(N)]
   results = pool.map(timestep_i,takes)
   x1 = np.empty(x0.shape,dtype=float)
   v1 = np.empty(v0.shape,dtype=float)
   for i,x_i1,v_i1 in results:
       x1[i] = x_i1
       v1[i] = v_i1
   return x1,v1
def timestep_i(args):
   i,x0,v0,G,m,dt = args
   a_i0 = a(i,x0,G,m)
   v_i1 = a_i0 * dt + v0[i]
   x_i1 = a_i0 * dt ** 2 +v0[i]*dt + x0[i]
   return i,x_i1,v_i1

def initial_cond(N,D):
   x0 = np.random.rand(N,D)
   v0 = np.zeros((N,D),dtype=float)
   m = np.ones(N,dtype=float)
   return x0,v0,m
class Pool(object):
   def __init__(self):
       self.f = None
       self.P = COMM_WORLD.Get_size()
       self.rank = COMM_WORLD.Get_rank()
   def wait(self):
       if self.rank == 0:
           raise RuntimeError("Proc 0 cannot wait!")
       status = MPI.Status()
       while True:
           task = COMM_WORLD.recv(source=0,tag=MPI.ANY_TAG,status=status)
           if not task:
               break
           if isinstance(task,FunctionType):
               self.f = task
               continue
           result = self.f(task)
           COMM_WORLD.isend(result,dest=0,tag=status.tag)
   def map(self,f,tasks):
       N = len(tasks)
       P = self.P
       Pless1 = P - 1
       if self.rank != 0:
           self.wait()
           return
       if f is not self.f:
           self.f = f
           requests = []
           for p in range(1,self.P):
               r = COMM_WORLD.isend(f,dest=p)
               requests.append(r)
           MPI.Request.waitall(requests)
           results = []
           for i in range(N):
               result = COMM_WORLD.recv(source=(i%Pless1)+1,tag=i)
               results.append(result)
           return results
   def __del__(self):
       if self.rank == 0:
           for p in range(1,self.p):
               COMM_WORLD.isend(False,dest=p)
def simulate(N,D,S,G,dt):
   x0,v0,m = initial_cond(N,D)
   pool = Pool()
   if COMM_WORLD.Get_rank()==0:
       for s in range(S):
           x1,v1 = timestep(x0,v0,G,m,dt,pool)
           x0,v0 = x1,v1
       else:
           pool.wait()
if __name__ == '__main__':
   simulate(128,3,300,1.0,0.001)
Ps = [1,2,4,8]
runtimes = []
for P in Ps:
   start = time.time()
   simulate(128,3,300,1.0,0.001)
   stop = time.time()
   runtimes.append(stop - start)
print(runtimes)

来源:https://blog.csdn.net/Chandler_river/article/details/125877506

标签:Python,并行化,执行
0
投稿

猜你喜欢

  • Dialog 按照顺序弹窗的优雅写法

    2021-10-18 18:35:25
  • JS操作Cookie写入和读取实例代码

    2024-04-22 13:07:30
  • 使用sysbench来测试MySQL性能的详细教程

    2024-01-14 14:33:54
  • Opera浏览器简介

    2009-02-05 20:56:00
  • 栅格:一以贯之

    2008-07-22 12:19:00
  • JavaScrpt的面向对象全面解析

    2024-04-23 09:20:40
  • QQ聊天窗口链接提示效果代码

    2008-12-16 12:59:00
  • Python2包含中文报错的解决方法

    2021-09-12 20:51:24
  • 浅谈python3.6的tkinter运行问题

    2021-08-04 01:29:16
  • opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

    2023-05-16 13:37:20
  • 让Dreamweaver MX显示最舒服的编程环境

    2008-02-25 14:01:00
  • python反射机制内置函数及场景构造详解

    2022-03-04 07:16:52
  • python 用递归实现通用爬虫解析器

    2022-04-15 08:13:55
  • mybatis统计每条SQL的执行时间的方法示例

    2024-01-28 12:54:43
  • python工具——Mimesis的简单使用教程

    2021-08-06 07:27:23
  • 一道关于数据库(经典父子级 ID 关联)更新题

    2024-01-17 00:07:19
  • 当设计师遭遇HTML5

    2011-08-05 18:59:53
  • 解决Keras中Embedding层masking与Concatenate层不可调和的问题

    2022-06-02 17:02:16
  • Vue3初探之ref、reactive以及改变数组的值

    2024-04-27 16:06:00
  • JavaScript用Number方法实现string转int

    2024-05-11 09:33:43
  • asp之家 网络编程 m.aspxhome.com