基于Python pyecharts实现多种图例代码解析

作者:Yi_warmth 时间:2021-11-10 05:20:17 

词云图


from pyecharts.charts import WordCloud
def word1():
 words= [
   ("Sam S Club", 10000),
   ("Macys", 6181),
   ("Amy Schumer", 4386),
   ("Jurassic World", 4055),
   ("Charter Communications", 2467),
   ("Chick Fil A", 2244),
   ("Planet Fitness", 1868),
   ("Pitch Perfect", 1484),
   ("Express", 1112),
   ("Home", 865),
   ("Johnny Depp", 847),
   ("Lena Dunham", 582),
   ("Lewis Hamilton", 555),
   ("KXAN", 550),
   ("Mary Ellen Mark", 462),
   ("Farrah Abraham", 366),
   ("Rita Ora", 360),
   ("Serena Williams", 282),
   ("NCAA baseball tournament", 273),
   ("Point Break", 265),
 ]
 worldcloud = (
   WordCloud()
   .add("", words, word_size_range=[20, 100])
   .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond"))
 )
 # worldcloud = (
 #   WordCloud()
 #   .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
 #   .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond"))
 # )
 worldcloud.render("wordl.html")
 os.system("wordl.html")

效果如下:

基于Python pyecharts实现多种图例代码解析

散点图


from pyecharts.charts import Scatter
import numpy as np

def sca():
 x_data = np.linspace(0, 10, 30)
 y1_data = np.sin(x_data)
 y2_data = np.cos(x_data)
 # 绘制散点图
 # 设置图表大小
 figsise = opt.InitOpts(width="800px", height="600px")
 scatter = Scatter(init_opts=figsise)
 # 添加数据
 scatter.add_xaxis(xaxis_data=x_data)
 scatter.add_yaxis(series_name="sin(x)散点图", #名称
          y_axis=y1_data, # 数据
          label_opts=opt.LabelOpts(is_show=False), # 数据不显示
          symbol_size=15, # 设置散点的大小
          symbol="triangle" # 设置散点的形状
          )
 scatter.add_yaxis(series_name="cos(x)散点图", y_axis=y2_data, label_opts=opt.LabelOpts(is_show=False))
 scatter.render()
 os.system("render.html")

效果如下:

基于Python pyecharts实现多种图例代码解析

饼状图


from pyecharts.charts import Pie
from pyecharts import options as optfrom pyecharts.faker import Faker as fa

def pie1():
 pie = (
   Pie()
   .add("", [list(z) for z in zip(fa.choose(), fa.values())])
   .set_global_opts(title_opts=opt.TitleOpts(title="pie-基本示例"))
   .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
 )
 pie.render()
 os.system("render.html")

def pie2():
 pie = (
   Pie()
     .add("", [list(z) for z in zip(fa.choose(), fa.values())], radius=["40%", "75%"])
     .set_global_opts(title_opts=opt.TitleOpts(title="pie-示例"),
              legend_opts=opt.LegendOpts(
                orient="vertical", pos_top="15%", pos_left="2%"
              ))
     .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
 )
 pie.render()
 os.system("render.html")

def pie3():
 pie = (
   Pie()
     .add("", [list(z) for z in zip(fa.choose(), fa.values())],
        radius=["40%", "75%"],
        center=["25%", "50%"],
        rosetype="radius",
        label_opts=opt.LabelOpts(is_show=False))

.add("", [list(z) for z in zip(fa.choose(), fa.values())],
        radius=["30%", "75%"],
        center=["75%", "50%"],
        rosetype="area")

.set_global_opts(title_opts=opt.TitleOpts(title="pie-玫瑰图示例"))

)
 pie.render()
 os.system("render.html")

def pie4():
 # 多饼图显示
 pie = (
   Pie()
   .add(
     "",
     [list(z) for z in zip(["剧情", "其他"], [25, 75])],
     center=["20%", "30%"],
     radius=[40, 60]
   )
   .add(
     "",
     [list(z) for z in zip(["奇幻", "其他"], [24, 76])],
     center=["55%", '30%'],
     radius=[40, 60]
   )
   .add(
     "",
     [list(z) for z in zip(["爱情", "其他"], [14, 86])],
     center=["20%", "70%"],
     radius=[40, 60]
   )
   .add(
     "",
     [list(z) for z in zip(["惊骇", "其他"], [1, 89])],
     center=["55%", "70%"],
     radius=[40, 60]
   )
   .set_global_opts(
     title_opts=opt.TitleOpts(title="pie-多饼图基本示例"),
     legend_opts=opt.LegendOpts(
       type_="scroll", pos_top="20%", pos_left="80%", orient="vertical"
     )
   )
   .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}"))
 )
 pie.render()
 os.system("render.html")

直方图


from pyecharts.charts import Bar
from pyecharts import options as opt
from pyecharts.globals import ThemeType
from pyecharts.faker import Faker as fa
import random

def pye1():
 # 生成随机数据
 attr = fa.days_attrs
 v1 = [random.randrange(10, 150) for _ in range(31)]
 v2 = [random.randrange(10, 150) for _ in range(31)]

# 初始化一个Bar对象,并设定一写初始化设置
 bar = Bar(init_opts=opt.InitOpts(theme=ThemeType.WHITE))
 # 添加数据
 bar.add_xaxis(attr)
 # is_selected: 打开图表时是否默认加载  grap:不同系列的柱间距离,百分比; color:指定柱状图Label的颜色
 bar.add_yaxis("test1", v1, gap="0", category_gap="20%", color=fa.rand_color())
 bar.add_yaxis("test2", v2, is_selected=False, gap="0%", category_gap="20%", color=fa.rand_color())
 # 全局配置
 # title_opts:图标标题相关设置
 # toolbox_opts: 工具栏相关设置
 # yaxis_opts/xaxis_opts: 坐标轴相关设置
 # axislabel_opts: 坐标轴签字相关设置
 # axisline_opts: 坐标轴轴线相关设置
 # datazoom_opts: 坐标轴轴线相关设置
 # markpoint_opts: 标记点相关设置
 # markpoint_opts:label_opts=opts.LabelOpts(is_show=False) 标签值是否叠加
 # markline_opts:标记线相关设置
 bar.set_global_opts(title_opts=opt.TitleOpts(title="主标题", subtitle="副标题"),
           toolbox_opts=opt.ToolboxOpts(),
           yaxis_opts=opt.AxisOpts(axislabel_opts=opt.LabelOpts(formatter="{value}/月"), name="这是y轴"),
           xaxis_opts=opt.AxisOpts(
           axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(color='blue')), name="这是x轴"),
           datazoom_opts=opt.DataZoomOpts()
           )
 bar.set_series_opts(markpoint_opts=opt.MarkPointOpts(data=[opt.MarkPointItem(type_="max", name="最大值"),
                               opt.MarkPointItem(type_="min", name="最小值"),
                               opt.MarkPointItem(type_="average", name="平均值")]),
           markline_opts=opt.MarkLineOpts(data=[opt.MarkLineItem(type_="min", name="最小值"),
                              opt.MarkLineItem(type_="max", name="最大值"),
                              opt.MarkLineItem(type_="average", name="平均值")]))
 # 指定生成html文件路径
 bar.render('test.html')
 os.system("test.html")

效果如下

基于Python pyecharts实现多种图例代码解析

来源:https://www.cnblogs.com/zhouzetian/p/13300487.html

标签:Python,pyecharts,图
0
投稿

猜你喜欢

  • 整理关于Bootstrap表单的慕课笔记

    2024-04-16 10:27:19
  • JS如何实现在弹出窗口中加载页面

    2024-04-29 14:07:53
  • MS SQL SERVER 数据库日志压缩方法与代码

    2024-01-13 04:24:00
  • Python3实现将一维数组按标准长度分隔为二维数组

    2021-10-24 16:46:20
  • 微信小程序实现虎年春节头像制作

    2024-04-16 08:47:47
  • ASP编程中的常见问题

    2007-09-20 13:32:00
  • AlmaLinux 9 安装 MySQL 8.0.32的详细过程

    2024-01-21 21:38:36
  • Python使用Plotly绘制常见5种动态交互式图表

    2023-06-08 06:27:59
  • XHTML中用途相似的标签

    2008-03-24 19:33:00
  • python 调用c语言函数的方法

    2023-12-11 17:24:21
  • Perl中的文件读写学习笔记

    2022-07-10 09:13:55
  • Python重试库 Tenacity详解(推荐)

    2021-07-07 00:20:09
  • JavaScript 学习 - 提高篇

    2024-04-30 08:54:46
  • python3+PyQt5+Qt Designer实现扩展对话框

    2023-08-01 00:16:45
  • wxpython中利用线程防止假死的实现方法

    2022-01-27 00:45:29
  • python3.8.3安装教程及环境配置的详细教程(64-bit)

    2023-03-01 05:21:10
  • 解决python super()调用多重继承函数的问题

    2022-09-28 07:50:44
  • Dreamweaver MX 2004新特点

    2008-02-03 11:35:00
  • 在Python中实现字典反转案例

    2022-12-17 02:05:46
  • 新年伊始,看各大网站新春LOGO

    2009-01-01 19:35:00
  • asp之家 网络编程 m.aspxhome.com