python pyecharts库的用法大全

作者:qq_40723803 时间:2021-04-21 13:48:05 

目录
  • 什么是pyecharts?

  • pyecharts安装

  • 加载

  • 折线图的绘制

  • 条形图和折线图的结合

  • 绘制漏斗图

什么是pyecharts?

pyecharts 是一个用于生成 Echarts 图表的类库。

echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化。pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。

使用 pyecharts 可以生成独立的网页,也可以在 flask , Django 中集成使用。

pyecharts包含的图表#
Bar(柱状图/条形图)
Bar3D(3D 柱状图)
Boxplot(箱形图)
EffectScatter(带有涟漪特效动画的散点图)
Funnel(漏斗图)
Gauge(仪表盘)
Geo(地理坐标系)
Graph(关系图)
HeatMap(热力图)
Kline(K线图)
Line(折线/面积图)
Line3D(3D 折线图)
Liquid(水球图)
Map(地图)
Parallel(平行坐标系)
Pie(饼图)
Polar(极坐标系)
Radar(雷达图)
Sankey(桑基图)
Scatter(散点图)
Scatter3D(3D 散点图)
ThemeRiver(主题河流图)
WordCloud(词云图)

用户自定义

Grid 类:并行显示多张图
Overlap 类:结合不同类型图表叠加画在同张图上
Page 类:同一网页按顺序展示多图
Timeline 类:提供时间线轮播多张图

pyecharts安装

 pip install pyecharts

下面给大家介绍python pyecharts库的使用,一起看看!

现在下载的库都是1.x版本的,使用方法和以前有很大区别

加载


from pyecharts.charts import Line, Bar, Funnel
from pyecharts.faker import Faker
import pyecharts.options as opts
from pyecharts.commons.utils import JsCode

折线图的绘制

最简单的版本


line1 = (
Line()
.add_xaxis(['2015', '2016', '2017', '2018', '2019'])
.add_yaxis('进入党政机关及事业单位的比例%', [30.23, 15.06, 17.6, 16.56, 18.51])
)

line1.render_notebook()

python pyecharts库的用法大全

高级版本

多条线,图片大小,设置标题、图例及其位置,缺失数据的绘制,给图例也加上颜色进行区分


# https://blog.csdn.net/seakingx/article/details/105531515 绘制百分数
# https://www.freesion.com/article/2819552517/ 图例添加颜色,color参数,非linestyle_opts的子参数
line1 = (
Line(init_opts=opts.InitOpts(width="600px", height="400px"))
.add_xaxis(['2015', '2016', '2017', '2018', '2019'])
.add_yaxis('进入党政机关及事业单位的比例%', [30.23, 15.06, 17.6, 16.56, 18.51],
   label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '%'}"))
   )
.add_yaxis('签约国企、私企和三资企业比例%', [69.78, 84.78, None, 82.67, 81.33],
   label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '%'}")),
   #linestyle_opts=opts.LineStyleOpts(color='yellow', width=2)
   #linestyle_opts=opts.LineStyleOpts(width=2),
   color='blue'
   )
.set_global_opts(title_opts=opts.TitleOpts(title='南开大学本科生的就业去向及比例',
           pos_right='50%'
           ),
     legend_opts=opts.LegendOpts(pos_right='10%',
           pos_top='10%',
           orient='vertical')
    )
#.render('南开本科.html')
)

line1.render_notebook()

python pyecharts库的用法大全

render()与render_notebook的报错和无反应:

line1有render代码时,就不能在代码里添加render_notebook了,否则报错: AttributeError: ‘str' object has no attribute ‘render_notebook'

条形图和折线图的结合

最简单的形式


x = Faker.choose()
scatter1 = (
Bar()
.add_xaxis(x)
.add_yaxis("商家A", Faker.values(), yaxis_index=0)
# 设置副坐标轴时,必须加这个命令,这个命令并不能决定主副坐标轴
.extend_axis(yaxis=opts.AxisOpts(type_="value", name="商家A", position="left"))
.set_global_opts(yaxis_opts=opts.AxisOpts(type_="value", name="商家B", position="right"))
)

# 下面的图里只能设置个index
scatter2 = (
Line()
.add_xaxis(x)
.add_yaxis("商家B", [v/1000 for v in Faker.values()], yaxis_index=1)
)
scatter1.overlap(scatter2)
scatter1.render_notebook()

python pyecharts库的用法大全

副坐标轴的使用和坐标轴范围、刻度大小的设置,添加坐标轴的标签


# 绘制条形图
bar=(
Bar()
.add_xaxis(['2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021'])
.add_yaxis('招录职位数', [11729, 13475, 15659, 15583, 16144, 9657, 13549, 13172])
.add_yaxis('招录人数', [19538, 22249, 27817, 27061, 28533, 14537, 24128, 25726])

# 设置副坐标轴
.extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 万"),
         interval=30,
        max_=180,
        min_=0) # 设置坐标轴的区间长度
   )
#.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
 title_opts=opts.TitleOpts(title="历年公务员考试数据", pos_right='45%'), # 设置标题及标题的位置
 legend_opts=opts.LegendOpts(pos_right='10%', # 设置图例的位置
        #pos_top='10%',
        orient='vertical'), # 不同图例之间是竖着排放的
 #max_=40000, 这里没有这个lim参数,在坐标轴里面可以设置

# 设置主坐标轴配置项
 yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 人"),
        max_=50000)   # 设置坐标轴的范围 lim
)

)

# 绘制折线图(也可以不加括号)
line = Line().add_xaxis(['2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021']).add_yaxis("报名人数", [152, 140.9, 139.46, 148.63, 138, 137.93, 140, '-'],
     yaxis_index=1, #如果不加该参数,就没有副坐标轴,这样不同量级的数据就会出现问题
     label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '万'}"))
     )

# 两个图形叠加起来
bar.overlap(line)
bar.render("overlap_bar_line.html")
bar.render_notebook()

python pyecharts库的用法大全

绘制漏斗图

最简单的绘制方法


# 主要是数据格式和其他的不一致
funnel = (
Funnel()
.add("商城漏斗", [ list(two_values) for two_values in zip(['召回', '粗排', '精排'], [100, 80, 10]) ])
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}次"))
.set_global_opts(title_opts=opts.TitleOpts(title="请求过滤的漏斗分析"))
)

funnel.render_notebook()

复杂点的绘制方法


# https://zhuanlan.zhihu.com/p/63976935 一些参考
funnel = (
Funnel(init_opts=opts.InitOpts(width="600px", height="400px")) #是宽和高,而不是像素
#Funnel()
.add("商城漏斗", [ list(two_values) sfor two_values in zip(['召回', '粗排', '精排'], [100, 80, 10]) ])
#.set_series_opts(label_opts=opts.LabelOpts(is_show=False),
     #markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}, {d}%")) # d是每个数值占总体的比重

# 百分比这里建议传入一组新的y数据(用每个数据除以一个数值) https://zhuanlan.zhihu.com/p/63976935
.set_global_opts(title_opts=opts.TitleOpts(title="请求过滤的漏斗分析"),
    #yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{data} {value}%')) #"{value} 人"
    )
)

funnel.render_notebook()

python pyecharts库的用法大全

来源:https://blog.csdn.net/qq_40723803/article/details/115422490

标签:python,pyecharts,库
0
投稿

猜你喜欢

  • 在Python中使用itertools模块中的组合函数的教程

    2023-11-06 16:31:36
  • Python定时任务工具之APScheduler使用方式

    2022-02-02 05:50:51
  • 详解MySQL双活同步复制四种解决方案

    2024-01-13 04:39:47
  • 如何使用Goland IDE go mod 方式构建项目

    2024-02-23 00:36:40
  • windows python3安装Jupyter Notebooks教程

    2023-04-13 12:56:16
  • 一个效果写的HashTable代码

    2024-04-10 13:57:49
  • asp.net下利用js实现返回上一页的实现方法小集

    2024-05-28 15:37:22
  • python 解决flask 图片在线浏览或者直接下载的问题

    2022-05-15 06:24:57
  • SQL2005 学习笔记 窗口函数(OVER)

    2024-01-27 09:50:49
  • 纯ASP结合VML生成完美图-柱图

    2010-05-11 16:48:00
  • mysql MGR 单主多主模式切换知识点详解

    2024-01-28 00:13:00
  • 盘点Python加密解密模块hashlib的7种加密算法(推荐)

    2021-09-19 01:02:01
  • centos7通过yum安装mysql的方法

    2024-01-18 06:48:57
  • 在PHP中读取和写入WORD文档的代码

    2023-09-28 02:30:22
  • PyCharm关闭碍眼的波浪线图文详解

    2023-07-27 08:47:53
  • 使用python scrapy爬取天气并导出csv文件

    2023-02-25 16:16:10
  • Python format函数详谈

    2023-12-24 03:57:59
  • golang实现各种情况的get请求操作

    2024-04-25 15:30:15
  • 最强Python可视化绘图库Plotly详解用法

    2022-03-08 11:01:07
  • Python爬虫框架-scrapy的使用

    2022-09-11 20:12:28
  • asp之家 网络编程 m.aspxhome.com