Win10下安装并使用tensorflow-gpu1.8.0+python3.6全过程分析(显卡MX250+CUDA9.0+cudnn)
作者:ice不加冰 时间:2021-06-29 20:05:21
-----最近从github上找了一个代码跑,但是cpu训练的时间实在是太长,所以想用gpu训练一下,经过了一天的折腾终于可以用gpu进行训练了,嘿嘿~
首先先看一下自己电脑的显卡信息:
可以看到我的显卡为MX250
然后进入NVIDIA控制面板->系统信息->组件 查看可以使用的cuda版本
这里我先下载了cuda10.1的版本,不过后来我发现tensorflow-gpu 1.8.0仅支持cuda9.0的版本,所以之后我又重装了一遍cuda9.0,中间还经历了删除cuda10.0,两个版本的安装都是一样的。
进入官网:https://developer.nvidia.com/cuda-toolkit-archive 找到和显卡信息相匹配的cuda(cuda是向下兼容的)
下载完成后按照默认的执行下去(当然也可以修改安装的路径)在安装时如果电脑装有vs2017,那么这里建议取消VS
Integration
然后一步步往下执行
检查cuda是否安装成功:输入nvcc --version
cuda的环境变量在安装时自动配置了,所以不需要我们操心
下面安装对应版本的cudnn:https://developer.nvidia.com/cudnn 在这个网站先创建账户,再下载对应版本的cudnn
cudnn下载完成后进行解压,里面有三个文件夹
将上面的三个文件夹覆盖你之前安装的cuda路径下的相同名称的文件夹(默认安装的cuda和我截图中的路径一样)
下面我们安装tensorflow-gpu = 1.8.0
因为我安装的版本比较老了,现在最新的Anaconda已经装不了了,这里把我的Anaconda版本是Anaconda3-5.1.0-Windows-x86_64,使用的python版本是3.6 安装的时候记得把环境变量勾选上,这样就不用自己配置了
安装完成后创建一个名称为tensorflow的环境: conda create --name tensorflow python=3.6
然后进入tensorflow环境中正式安装tensorflow-gpu
然后输入命令:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.8.0
等待安装完成即可
下面进行tensorflow-gpu的测试
创建一个python文件,代码如下:
import tensorflow as tf
with tf.device('/cpu:0'):
a = tf.constant([1.0,2.0,3.0],shape=[3],name='a')
b = tf.constant([1.0,2.0,3.0],shape=[3],name='b')
with tf.device('/gpu:0'):
c = a+b
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=True))
sess.run(tf.global_variables_initializer())
print(sess.run(c))
在刚才激活的tensorflow环境下进行运行:python + 文件名
结果如下:
-----然后我运行了一下之前用cpu训练的代码,gpu训练的速度就是快,原先cpu要训练七八个小时的代码,gpu一个小时不到跑完了,还是爽啊,虽然我知道我的显卡很垃圾,,,,
可以看到显卡使用的情况了,哈哈哈~~
总结
以上所述是小编给大家介绍的Win10下安装并使用tensorflow-gpu1.8.0+python3.6全过程(显卡MX250+CUDA9.0+cudnn),希望对大家有所帮助!
来源:https://blog.csdn.net/weixin_43884418/article/details/104346859


猜你喜欢
浅析python函数式编程
PYQT5 vscode联合操作qtdesigner的方法

numpy数组切片的使用

解决python调用matlab时的一些常见问题
Javascript中的arguments对象
Bootstrap DateTime Picker日历控件简单应用

Oracle 异构服务实践

Spring Data JPA的Audit功能审计数据库的变更

Oracle新建用户、角色,授权,建表空间的sql语句
使用pytorch完成kaggle猫狗图像识别方式

Python实现base64编码
Python实现Opencv cv2.Canny()边缘检测

Python实现批量压缩图片

MySQL安全性指南 (2)
Python使用正则表达式获取网页中所需要的信息
python 工具 字符串转numpy浮点数组的实现

js 判断一组日期是否是连续的简单实例
php bugs代码审计基础详解

利用Python编写简易版德州扑克小游戏

jQuery 1.4 Released 新特性官方诠释
