Python实现Wordcloud生成词云图的示例

作者:merlin& 时间:2021-09-06 05:29:15 

wordcloud是Python扩展库中一种将词语用图片表达出来的一种形式,通过词云生成的图片,我们可以更加直观的看出某篇文章的故事梗概。

首先贴出一张词云图(以哈利波特小说为例):

Python实现Wordcloud生成词云图的示例

在生成词云图之前,首先要做一些准备工作

1.安装结巴分词库


pip install jieba

Python实现Wordcloud生成词云图的示例

Python中的分词模块有很多,他们的功能也都是大同小异,我们安装的结巴分词 是当前使用的最多的类型。

下面我来简单介绍一下结巴分词的用法

结巴分词的分词模式分为三种:

(1)全模式:把句子中所有的可以成词的词语都扫描出来, 速度快,但是不能解决歧义问题

(2)精确模式:将句子最精确地切开,适合文本分析

(3)搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词

下面用一个简单的例子来看一下三种模式的分词区别:


import jieba

# 全模式:把句子中所有的可以成词的词语都扫描出来, 速度快,但是不能解决歧义问题
text = "哈利波特是一常优秀的文学作品"
seg_list = jieba.cut(text, cut_all=True)
print(u"[全模式]: ", "/ ".join(seg_list))

# 精确模式:将句子最精确地切开,适合文本分析
seg_list = jieba.cut(text, cut_all=False)
print(u"[精确模式]: ", "/ ".join(seg_list))

# 默认是精确模式
seg_list = jieba.cut(text)
print(u"[默认模式]: ", "/ ".join(seg_list))

# 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词
seg_list = jieba.cut_for_search(text)
print(u"[搜索引擎模式]: ", "/ ".join(seg_list))

下面是对这句话的分词方式:

Python实现Wordcloud生成词云图的示例

通过这三种分词模式可以看出,这些分词模式并没有很好的划分出“哈利波特”这个专有名词,这是因为在结巴分词的字典中并没有记录这个名词,所以需要我们手动添加自定义字典

添加自定义字典:找一个方便引用的位置              (下图的路径是我安装的位置),新建文本文档(后缀名为.txt),将想添加的词输入进去(注意输入格式),保存并退出

Python实现Wordcloud生成词云图的示例

在上面的代码中加入自定义字典的路径,再点击运行


jieba.load_userdict("/home/jmhao/anaconda3/lib/python3.7/site-packages/jieba/mydict.txt")

分词结果,可以看出“哈利波特”这个词已经被识别出来了

Python实现Wordcloud生成词云图的示例

结巴分词还有另一个禁用词的输出结果


stopwords = {}.fromkeys(['优秀', '文学作品'])

#添加禁用词之后
seg_list = jieba.cut(text)
final = ''
for seg in seg_list:
  if seg not in stopwords:
      final += seg
seg_list_new = jieba.cut(final)
print(u"[切割之后]: ", "/ ".join(seg_list_new))

可以看到输出结果中并没有“优秀”和“文学作品”两个词

Python实现Wordcloud生成词云图的示例

结巴分词还有很多比较复杂的操作,具体的可以去官网查看,我就不再过多的赘述了

下面我们正式开始词云的制作

首先下载模块,这里我所使用的环境是Anaconda,由于Anaconda中包含很多常用的扩展包,所以这里只需要下载wordcloud。若使用的环境不是Anaconda,则另需安装numpy和PIL模块


pip install wordcloud

Python实现Wordcloud生成词云图的示例

然后我们需要找一篇文章并使用结巴分词将文章分成词语的形式


# 分词模块
def cut(text):
  # 选择分词模式
  word_list = jieba.cut(text,cut_all= True)
  # 分词后在单独个体之间加上空格
  result = " ".join(word_list)
  # 返回分词结果
  return result

这里我在当前文件夹下创建了一个文本文档“xiaoshuo.txt”,并复制了一章的小说作为词云的主体文字

使用代码控制,打开并读取小说的内容


#导入文本文件,进行分词,制作词云
with open("xiaoshuo.txt") as fp:
  text = fp.read()
  # 将读取的中文文档进行分词
  text = cut(text)

在网上找到一张白色背景的图片下载到当前文件夹,作为词云的背景图(若不指定图片,则默认生成矩形词云)


#设置词云形状,若设置了词云的形状,生成的词云与图片保持一致,后面设置的宽度和高度将默认无效
 mask = np.array(image.open("monkey.jpeg"))

接下来可以根据喜好来定义词云的颜色、轮廓等参数 下面为常用的参数设置方法

font_path : "字体路径"词云的字体样式,若要输出中文,则跟随中文的字体
width =  n画布宽度,默认为400像素
height =  n画布高度,默认为400像素
scale = n按比例放大或缩小画布
min_font_size = n设置最小的字体大小
max_font_size = n设置最大的字体大小
stopwords = 'words'设置要屏蔽的词语
background_color = ''color设置背景板颜色
relative_scaling = n设置字体大小与词频的关联性
contour_width = n设置轮廓宽度
contour_color = 'color'设置轮廓颜色

完整代码


#导入词云库
from wordcloud import WordCloud
#导入图像处理库
import PIL.Image as image
#导入数据处理库
import numpy as np
#导入结巴分词库
import jieba

# 分词模块
def cut(text):
  # 选择分词模式
  word_list = jieba.cut(text,cut_all= True)
  # 分词后在单独个体之间加上空格
  result = " ".join(word_list)
  return result

#导入文本文件,进行分词,制作词云
with open("xiaoshuo.txt") as fp:
  text = fp.read()
  # 将读取的中文文档进行分词
  text = cut(text)
  #设置词云形状
  mask = np.array(image.open("monkey.jpeg"))
  #自定义词云
  wordcloud = WordCloud(
    # 遮罩层,除白色背景外,其余图层全部绘制(之前设置的宽高无效)
    mask=mask,
    #默认黑色背景,更改为白色
    background_color='#FFFFFF',
    #按照比例扩大或缩小画布
    scale=,
    # 若想生成中文字体,需添加中文字体路径
    font_path="/usr/share/fonts/bb5828/逐浪雅宋体.otf"
  ).generate(text)
  #返回对象
  image_produce = wordcloud.to_image()
  #保存图片
  wordcloud.to_file("new_wordcloud.jpg")
  #显示图像
  image_produce.show()

注:若想要生成图片样式的词云图,找到的图片背景必须为白色,或者使用Photoshop抠图替换成白色背景,否则生成的词云为矩形

我的词云原图:

Python实现Wordcloud生成词云图的示例

生成的词云图:

Python实现Wordcloud生成词云图的示例 

来源:https://www.cnblogs.com/cherish-hao/p/12593903.html

标签:Python,Wordcloud,词云图
0
投稿

猜你喜欢

  • Matplotlib 3D 绘制小红花原理

    2022-11-23 11:53:08
  • Mysql中正则表达式Regexp常见用法及说明

    2024-01-14 21:51:35
  • 使用Python的Supervisor进行进程监控以及自动启动

    2022-11-19 16:55:35
  • Python里字典的基本用法(包括嵌套字典)

    2023-04-26 14:51:00
  • python如何实现API的调用详解

    2023-12-26 18:24:07
  • Numpy对数组的操作:创建、变形(升降维等)、计算、取值、复制、分割、合并

    2023-11-20 23:14:50
  • Python测试线程应用程序过程解析

    2023-09-11 03:04:25
  • Python实现批量识别银行卡号码以及自动写入Excel表格步骤详解

    2023-12-12 21:39:18
  • mysql sock 文件解析及作用讲解

    2024-01-26 13:15:47
  • pandas读取csv文件,分隔符参数sep的实例

    2021-05-03 11:38:58
  • Python 面向对象之类class和对象基本用法示例

    2023-01-02 20:15:01
  • python超详细实现字体反爬流程

    2022-08-30 22:39:03
  • python中用shutil.move移动文件或目录的方法实例

    2021-01-03 07:35:06
  • OpenCV半小时掌握基本操作之傅里叶变换

    2022-03-27 22:25:47
  • 23个MySQL数据库安全使用技巧

    2007-10-26 16:02:00
  • JavaScript实现网页跨年倒计时

    2024-06-14 18:24:43
  • 使用go xorm来操作mysql的方法实例

    2024-01-18 11:56:35
  • oracle数据库中如何处理clob字段方法介绍

    2024-01-17 05:55:41
  • Django学习笔记之View操作指南

    2023-05-29 14:08:47
  • 解决go build不去vendor下查找包的问题

    2024-02-04 10:17:25
  • asp之家 网络编程 m.aspxhome.com