python sklearn常用分类算法模型的调用
作者:海涛anywn 时间:2021-06-18 11:42:25
本文实例为大家分享了python sklearn分类算法模型调用的具体代码,供大家参考,具体内容如下
实现对'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的简单调用。
# coding=gbk
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
data = pd.read_csv(data_file)
train = data[:int(len(data)*0.9)]
test = data[int(len(data)*0.9):]
train_y = train.label
train_x = train.drop('label', axis=1)
test_y = test.label
test_x = test.drop('label', axis=1)
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "H:\\Research\\data\\trainCG.csv"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
来源:https://blog.csdn.net/lihaitao000/article/details/66972039
标签:python,sklearn,分类算法模型
0
投稿
猜你喜欢
分析python请求数据
2023-09-26 08:46:08
Pycharm运行程序时,控制台输出PyDev console:starting问题
2022-09-27 14:26:32
PHP中PDO基础教程 入门级
2023-11-14 16:34:39
C#处理MySql多个返回集的方法
2024-01-21 15:30:08
Python PyQt5学习之样式设置详解
2022-11-04 20:48:46
JS的Form表单转JSON格式的操作代码
2023-07-02 05:24:03
python爬虫 猫眼电影和电影天堂数据csv和mysql存储过程解析
2024-01-20 23:51:58
ASP使用wsImage组件给图片加水印
2008-12-29 19:14:00
PyQt5笔记之弹出窗口大全
2021-06-30 06:53:14
高考要来啦!用Python爬取历年高考数据并分析
2021-06-10 04:08:25
javascript globalStorage类代码
2024-04-22 12:51:08
记一次MySQL更新语句update的踩坑
2024-01-16 19:35:29
Python+OpenCV图像处理——实现轮廓发现
2023-12-12 23:30:31
pytorch permute维度转换方法
2023-09-07 17:49:32
viper配置框架的介绍支持zookeeper的读取和监听
2024-04-27 15:32:12
TensorFlow模型保存和提取的方法
2022-04-30 05:19:54
js模仿php中strtotime()与date()函数实现方法
2024-04-18 10:01:55
SQL语句解析执行的过程及原理
2024-01-26 21:11:55
mysql中limit查询踩坑实战记录
2024-01-16 13:38:45
SQLServer行转列实现思路记录
2024-01-18 05:42:43