python中PS 图像调整算法原理之亮度调整
作者:Matrix_11 时间:2021-02-09 17:51:01
亮度调整
非线性亮度调整:
对于R,G,B三个通道,每个通道增加相同的增量。
线性亮度调整:
利用HSL颜色空间,通过只对其L(亮度)部分调整,可达到图像亮度的线性调整。但是,RGB和HSL颜色空间的转换很繁琐,一般还需要浮点数的运算,不仅增加了代码的复杂度,更重要的是要逐点将RGB转换为HSL,然后确定新的L值,再将HSL转换为RGB,运行速度可想而知是很慢的。要想提高图像亮度线性调整的速度,应该从三方面考虑,一是变浮点运算为整数运算,二是只提取HSL的L部分进行调整,三是采用汇编代码,在Delphi中,当然是BASM。下面是按照这三方面考虑写的图像亮度线性调整代码:
L := (Max(R, Max(G,B)) + Min(R, Min(G, B))) div 2;
L没有采用通常的百分比表示,而是取值0 - 255,这样就不必要采用浮点数运算了。
下面代码主要完成2个功能,一是用以前的L值与RGB分别求出其HSL的HS部分,其公式用Pascal表示为:
if L > 128 then
begin
rHS := (R * 128 - (L - 128) * 256) div (256 - L);
gHS := (G * 128 - (L - 128) * 256) div (256 - L);
bHS := (B * 128 - (L - 128) * 256) div (256 - L);
end else
begin
rHS := R * 128 div L;
gHS := G * 128 div L;
bHS := B * 128 div L;
end;
二是用新的L值(老的L值加需要调整的亮度值(0 - 255))和上面求出的HS值计算出新的
RGB值,计算方法为:
newL := L + Value - 128;
if newL > 0 then
begin
newR := rHS + (256 - rHS) * newL div 128;
newG := gHS + (256 - gHS) * newL div 128;
newB := bHS + (256 - bHS) * newL div 128;
else begin
newR := rHS + rHS * newL div 128;
newG := gHS + gHS * newL div 128;
newB := bHS + bHS * newL div 128;
end;
如此,一个像素点的线性亮度调整就基本完成了
Program:
clc;
clear all;
close all;
Image=imread('4.jpg');
Image=double(Image);
R=Image(:,:,1);
G=Image(:,:,2);
B=Image(:,:,3);
%%%% 求出原始图像亮度分量
I=(R+G+B)/3;
%%% 利用原始图像的亮度分量结合R,G,B求出HSL空间的H,S;
rHS=R;
gHS=G;
bHS=B;
[row, col]=size(I);
for i=1:row
for j=1:col
if(I(i,j)>128)
rHS(i,j)=(R(i,j)*128-(I(i,j)-128)*256)/(256-I(i,j));
gHS(i,j)=(G(i,j)*128-(I(i,j)-128)*256)/(256-I(i,j));
bHS(i,j)=(B(i,j)*128-(I(i,j)-128)*256)/(256-I(i,j));
else
rHS(i,j)=R(i,j)*128/(I(i,j));
gHS(i,j)=G(i,j)*128/(I(i,j));
bHS(i,j)=B(i,j)*128/(I(i,j));
end
end
end
%%%% 然后求出新的亮度值
%%%% Increment: 亮度的调整增量(-255,255)
Increment=-100;
I_out=I+Increment-128;
%%%% 再利用新的亮度值结合H,S,求出新的R,G,B分量
R_new=R;
G_new=G;
B_new=B;
for i=1:row
for j=1:col
if(I_out(i,j)>0)
R_new(i,j)=rHS(i,j)+(256-rHS(i,j))*I_out(i,j)/128;
G_new(i,j)=gHS(i,j)+(256-gHS(i,j))*I_out(i,j)/128;
B_new(i,j)=bHS(i,j)+(256-bHS(i,j))*I_out(i,j)/128;
else
R_new(i,j)=rHS(i,j)+rHS(i,j)*I_out(i,j)/128;
G_new(i,j)=gHS(i,j)+gHS(i,j)*I_out(i,j)/128;
B_new(i,j)=bHS(i,j)+bHS(i,j)*I_out(i,j)/128;
end
end
end
Image_new(:,:,1)=R_new;
Image_new(:,:,2)=G_new;
Image_new(:,:,3)=B_new;
imshow(Image/255);
figure, imshow(Image_new/255);
总结
以上所述是小编给大家介绍的python中PS 图像调整算法原理之亮度调整 ,网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
来源:https://blog.csdn.net/matrix_space/article/details/22991683
标签:python,ps,图像调整,亮度调整
0
投稿
猜你喜欢
background-clip/origin一则运用
2008-04-15 14:45:00
Python面向对象程序设计类的多态用法详解
2021-05-28 20:21:29
python 获取当前目录下的文件目录和文件名实例代码详解
2022-07-21 21:31:25
encodeURIComponent用法UrlEncode与URLEncode.encode()
2009-05-11 12:40:00
用Dreamweaver实现Real与网页结合
2010-07-13 12:11:00
Python sklearn分类决策树方法详解
2023-04-20 17:14:13
Pytorch实现LSTM和GRU示例
2022-02-08 09:14:44
vue2.x el-table二次封装实现编辑修改
2023-07-02 16:29:17
Python中的XML库4Suite Server的介绍
2023-08-12 01:26:41
Mybatis如何自动生成数据库表结构总结
2024-01-21 11:04:30
python日期相关操作实例小结
2021-07-14 18:39:13
从xml中获取城市,省份名称
2008-09-05 15:07:00
PHP排序二叉树基本功能实现方法示例
2023-07-10 04:45:53
python实现爬取百度图片的方法示例
2021-11-22 00:46:04
多维度导航探秘II
2010-08-17 21:24:00
IE中radio 或checkbox的checked属性初始状态下不能选中显示问题
2024-05-10 14:06:42
Go语言中rune方法使用详解
2024-04-23 09:37:18
使用Python解析Chrome浏览器书签的示例
2023-03-12 01:14:34
vue3.0如何使用computed来获取vuex里数据
2024-04-28 09:24:20
Python中bisect的使用方法
2021-12-03 05:56:12