Python+OpenCV之形态学操作详解

作者:锦鲤AI幸运 时间:2021-11-24 23:37:58 

一、 腐蚀与膨胀

1.1 腐蚀操作

import cv2
import numpy as np

img = cv2.imread('DataPreprocessing/img/dige.png')

cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

dige.png原图1展示(注: 没有原图的可以截图下来保存本地。):

Python+OpenCV之形态学操作详解

腐蚀1轮次之后~ (iterations = 1)

kernel = np.ones((3, 3), np.uint8)
erosion = cv2.erode(img, kernel, iterations=1)

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

腐蚀结果展示图2:

Python+OpenCV之形态学操作详解

腐蚀圆多次的效果,以及腐蚀原理

pie = cv2.imread('DataPreprocessing/img/pie.png')

cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

pie.png原图3:

Python+OpenCV之形态学操作详解

腐蚀原理, 其中滤波器的大小越大腐蚀的程度越大 图4:

Python+OpenCV之形态学操作详解

kernel = np.ones((30, 30), np.uint8)
erosion_1 = cv2.erode(pie, kernel, iterations=1)
erosion_2 = cv2.erode(pie, kernel, iterations=2)
erosion_3 = cv2.erode(pie, kernel, iterations=3)
res = np.hstack((erosion_1, erosion_2, erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

圆腐蚀三次结果展示图5:

Python+OpenCV之形态学操作详解

1.2 膨胀操作

kernel = np.ones((3, 3), np.uint8)
dige_dilate = erosion
dige_dilate = cv2.dilate(erosion, kernel, iterations=1)

cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

膨胀之前图2,发现线条变粗,跟原图对比的线条相差无几,但是没了那些长须装的噪音,图6:

Python+OpenCV之形态学操作详解

膨胀圆多次的效果,以及膨胀原理与腐蚀相反,有白色点的滤波器则滤波器内数据全变为白色。

pie = cv2.imread('DataPreprocessing/img/pie.png')

kernel = np.ones((30, 30), np.uint8)
dilate_1 = cv2.dilate(pie, kernel, iterations=1)
dilate_2 = cv2.dilate(pie, kernel, iterations=2)
dilate_3 = cv2.dilate(pie, kernel, iterations=3)
res = np.hstack((dilate_1, dilate_2, dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

膨胀圆3次的结果展示,图7:

Python+OpenCV之形态学操作详解

二、 开运算与闭运算

2.1 开运算

# 开:先腐蚀,再膨胀
img = cv2.imread('DataPreprocessing/img/dige.png')

kernel = np.ones((5, 5), np.uint8)
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

将原图1,先腐蚀,再膨胀,得到开运算结果图8:

Python+OpenCV之形态学操作详解

2.2 闭运算

# 闭:先膨胀,再腐蚀
img = cv2.imread('DataPreprocessing/img/dige.png')

kernel = np.ones((5, 5), np.uint8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

将原图1,先膨胀,再腐蚀,得到开运算结果图9:

Python+OpenCV之形态学操作详解

三、梯度运算

拿原图3的圆,做5次膨胀,5次腐蚀,相减得到其轮廓。

# 梯度=膨胀-腐蚀
pie = cv2.imread('DataPreprocessing/img/pie.png')
kernel = np.ones((7, 7), np.uint8)
dilate = cv2.dilate(pie, kernel, iterations=5)
erosion = cv2.erode(pie, kernel, iterations=5)

res = np.hstack((dilate, erosion))

cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

得到梯度运算结果图10:

Python+OpenCV之形态学操作详解

Python+OpenCV之形态学操作详解

四、礼帽与黑帽

4.1 礼帽

礼帽 = 原始输入-开运算结果

# 礼帽
img = cv2.imread('DataPreprocessing/img/dige.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

得到礼帽结果图11:

Python+OpenCV之形态学操作详解

4.2 黑帽

黑帽 = 闭运算-原始输入

# 黑帽
img = cv2.imread('DataPreprocessing/img/dige.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat ', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

得到礼帽结果图12:

Python+OpenCV之形态学操作详解

来源:https://blog.csdn.net/qq_37700257/article/details/127039846

标签:Python,OpenCV,形态学,操作
0
投稿

猜你喜欢

  • TensorFlow可视化工具TensorBoard默认图与自定义图

    2023-03-03 06:53:22
  • keras中epoch,batch,loss,val_loss用法说明

    2021-08-11 10:56:30
  • 详解Django+Uwsgi+Nginx的生产环境部署

    2022-10-30 10:54:17
  • 详解laravel安装使用Passport(Api认证)

    2023-11-19 02:08:54
  • Python3将jpg转为pdf文件的方法示例

    2021-06-25 11:31:17
  • Golang使用Gin框架实现http分块传输

    2024-02-08 20:15:18
  • MySQL root密码的重置方法

    2024-01-18 14:39:42
  • MySQL DDL 引发的同步延迟该如何解决

    2024-01-26 19:44:00
  • python opencv实现图像矫正功能

    2022-05-22 17:00:13
  • 如何判断用户是否非正常离开聊天室?

    2010-01-18 20:30:00
  • node.js实现BigPipe详解

    2024-05-05 09:22:17
  • Python 识别12306图片验证码物品的实现示例

    2021-04-03 22:17:24
  • Python个人博客程序开发实例用户验证功能

    2023-07-31 14:24:36
  • 探讨:Oracle数据库查看一个进程是如何执行相关的实际SQL语句

    2024-01-16 19:07:50
  • 一文教你学会定位线上MySQL锁超时问题

    2024-01-22 13:19:45
  • bootstrap实现二级下拉菜单效果

    2024-04-17 10:40:42
  • Python数据分析之 Matplotlib 饼图绘制

    2021-03-31 03:45:10
  • Python内建类型list源码学习

    2023-03-21 09:41:24
  • Python实现控制手机电脑拍照并自动发送邮箱

    2022-10-08 01:52:33
  • 在docker上安装运行mysql实例

    2024-01-19 10:44:26
  • asp之家 网络编程 m.aspxhome.com