Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

作者:最遥远的天秤 时间:2021-09-08 18:07:26 

制作NBA数据爬虫

捋顺思路

我们在这里选择的是百度体育带来的数据,我们在百度当中直接搜索NBA跳转到网页,我们可以看到,百度已经为我们提供了相关的数据

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们点击进去后,可以发现这是一个非常简洁的网址

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们看一下这个地址栏,发现毫无规律https://tiyu.baidu.com/live/detail/576O5Zu955S35a2Q6IGM5Lia56%2Bu55CD6IGU6LWbI2Jhc2tldGJhbGwjMjAyMS0wNi0xMyPniLXlo6t2c%2BWspritq%2BiIuQ%3D%3D/from/baidu_aladdin

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

好吧,只能再找找了,我们点击整个标签发现,这是一个网址,那就容易多了。

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

这里我们想要获取的无非就是具体的每一节数据和总分,然后如果用户还有其他需求的话我们就直接将其推送到百度网址上面来

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

爬取的思路大概就是这样,首先先访问主页面,然后在访问旗下今天的比赛,最后将比赛结果返回


编写代码

首先我们使用REQUESTS来访问网址

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们可以看到,百度没有做任何限制,直接访问也可以获得内容

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

接下来我们使用解析库进行解析

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

首先我们先将程序定位到Main标签

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

代码则是这样的,运行代码我们会发现,整个代码缩进了不少

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能
Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

获取主要的页面,我们使用FIND函数进行进一步操作

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们成功定位到了这个主页面,接下来就是我们开始爬取最近几次的比赛信息和详细页面了

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

更改代码,我们直接获取所有的比赛信息

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

在测试网站的时候,我发现百度竟然使用了AJAX技术,就是说你一次性获得的网站源代码可能只有五条,然后要进行再一次加载才能获取接下来的数据。但是这也对我们程序来说挺好的,我们本来也不需要那么多数据。

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们在这里查找了每一个的日期,查找对象为 date,接下来我们把其转换成字符串,因为百度上面这个日期有缩进,所以我们在后面添加 STRIP() 取消字符串前面的空格。按照这样的方式获取比赛地址

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

在这里,我们使用拼接字符串的方法,完成了对最后地址的解析

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能


# 程序名称 : NBAReporter
# 制作时间 : 2021年6月13日
# 运行环境 : Windows 10

import requests
from bs4 import BeautifulSoup

# 基础数据定义
baidu_nba_url = "https://tiyu.baidu.com/match/NBA/"
request_url = "https:"
nba_dict = {}

# 访问网址
nba_res = requests.get(baidu_nba_url)
# print(nba_res.text)

# 开始使用解析器
nba_soup = BeautifulSoup(nba_res.text, "html.parser")
nba_main = nba_soup.main
# print(nba_main)

nba_div = nba_main.find_all("div", class_ = "wa-match-schedule-list-wrapper")

for i in nba_div:
# 获取比赛时间
nba_time = i.find("div", class_ = "date").string.strip()
print(nba_time)
# 获取比赛的次数
nba_times = i.find("div", class_ = "list-num c-color").string
print(nba_times)
# 获取详细的比赛地址
nba_href = i.find_all("div", class_ = "wa-match-schedule-list-item c-line-bottom")

for url_nba in nba_href:
url_nba = url_nba.a
url_href = url_nba["href"]

real_url = request_url + url_href
print(real_url)

接下来我们要开始剩余部分的解析,我们可以看到我们还有一部分的详细信息没有爬取,所以我们开始爬取详细信息

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

按照逻辑继续编写代码

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

然后我们获取一下这里面的值

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

获取比赛的相关分数后,我们创建两个列表,一个列表定义我们等一下需要用到NBA的样式,另一个列表则存储今天的日期,最后返回

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

我们已经在这里吧这个方法封装了,所以我们创建一个新的文件,直接导入即可

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

NBAReporter.py


# 程序名称 : NBAReporter
# 制作时间 : 2021年6月13日
# 运行环境 : Windows 10

import requests
from bs4 import BeautifulSoup

def NBAReporter():
# 基础数据定义
baidu_nba_url = "https://tiyu.baidu.com/match/NBA/"
request_url = "https:"
nba_list = []
today_list = []

# 访问网址
nba_res = requests.get(baidu_nba_url)
# print(nba_res.text)

# 开始使用解析器
nba_soup = BeautifulSoup(nba_res.text, "html.parser")
nba_main = nba_soup.main
# print(nba_main)

nba_div = nba_main.find_all("div", class_ = "wa-match-schedule-list-wrapper")

for i in nba_div:
# 获取比赛时间
today = i.find("div", class_ = "date").string.strip()
# 获取比赛的次数
nba_times = i.find("div", class_ = "list-num c-color").string
# 获取详细的比赛地址
nba_href = i.find_all("div", class_ = "wa-match-schedule-list-item c-line-bottom")

for url_nba in nba_href:
url_nba = url_nba.a
url_href = url_nba["href"]

real_url = request_url + url_href
# print(real_url)

# 获取详细数据
vs_time = url_nba.find("div", class_ = "font-14 c-gap-bottom-small").string
vs_finals = url_nba.find("div",class_ = "font-12 c-color-gray").string

team_row_1 = url_nba.find("div", class_ = "team-row")
team_row_2 = url_nba.find("div", class_ = "c-gap-top-small team-row")

"""team_row_1_jpg = team_row_1.find("div", class_ = "inline-block")["style"]
team_row_2_jpg = team_row_2.find("div", class_ = "inline-block")["style"]
print(team_row_1_jpg,team_row_2_jpg)"""
team_row_1_name = team_row_1.find("span", class_ = "inline-block team-name team-name-360 team-name-320 c-line-clamp1").string
team_row_2_name = team_row_2.find("span", class_ = "inline-block team-name team-name-360 team-name-320").string
# print(team_row_1_name,team_row_2_name)
team_row_1_score = team_row_1.find("span", class_ = "inline-block team-score-num c-line-clamp1").string
team_row_2_score = team_row_2.find("span", class_ = "inline-block team-score-num c-line-clamp1").string
# print(team_row_1_score,team_row_2_score)

"""import re # 导入re库,不过最好还是在最前面导入,这里是为了演示的需要

team_row_1_jpg_url = re.search(r'background:url(.*)', team_row_1_jpg)
team_row_1_jpg_url = team_row_1_jpg_url.group(1)
team_row_2_jpg_url = re.search(r'background:url(.*)', team_row_2_jpg)
team_row_2_jpg_url = team_row_2_jpg_url.group(1)"""

nba = [ today, nba_times,"","",
vs_time, vs_finals, team_row_1_name, team_row_2_name,
"","", team_row_1_score, team_row_2_score
]

nba_list.append(nba)
today_list.append(today)

return nba_list,today_list

这里我们要编写的是GUI界面的实现程序

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

首先先导入我们运行所需要的库

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

简单定义一下我们的代码,设置标题和其他的一些窗口属性# self.setWindowOpacity(0.5)这里是设置窗口透明程度的一行代码,但是经过我的测验之后,发现这样子真的对于用户体验一点也不好,所以在这里我把它注释掉了

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

程序主逻辑如上图所示,我们创建了一个单元布局,然后又创建了和比赛一样的若干个标签,最后将函数返回的列表以标签的形式放在主窗口上面

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

最后创建事件,运行程序,这样子整个程序就完成了

NBAWindow.py


# 程序名称 : NBAWindow
# 制作时间 : 2021年6月14日
# 运行环境 : Windows 10
import sys
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from NBAReporter import *

# 首先创建一个主窗口
class NBAWindow(QTabWidget):
def __init__(self):
super().__init__()
self.make_Ui()

"""# 两分钟自动刷新
self.timer = QTimer()
self.timer.setInterval(500)
self.timer.timeout.connect(self.make_Ui)
self.timer.start()"""

self.setWindowTitle("NBA数据")
self.setGeometry(1440,0,480,300)
self.setFixedSize(480,300)
self.setWindowIcon(QIcon('images/nba.jpg'))
self.setStyleSheet("""background-color:red; """)
# self.setWindowOpacity(0.5)
self.setWindowFlags(Qt.WindowStaysOnTopHint|Qt.WindowMinimizeButtonHint|Qt.FramelessWindowHint)

def make_Ui(self):
self.nba,today = NBAReporter()
self.tab = 0

for a in self.nba:
# 设置网格单元布局
grid = QGridLayout()
self.setLayout(grid)

# 开始添加一个标签
tab = QWidget()
# 将这个标签设置为TAB并按照列表中的数值命名
self.addTab(tab,today[self.tab])

# 获取循环之后的位置,重写列表
positions = [(i, j) for i in range(3) for j in range(4)]
nba_list = self.nba[self.tab]

# 开始创建Tab下面的标签
for position, nba in zip(positions, nba_list):
#print(nba)
# 当时空值时,跳过执行
if nba == "":
continue

# 设置文字样式
label = QLabel("<font color='black', size=5><b>%s</b></font>"%nba)
grid.addWidget(label, *position)

# 设置整个窗口为表格布局
tab.setLayout(grid)

# grid.update()

# 将数值加一
self.tab += 1

if __name__ == '__main__':
app = QApplication(sys.argv)
window = NBAWindow()
window.show()
app.exec_()

NBAReporter.py


# 程序名称 : NBAReporter
# 制作时间 : 2021年6月13日
# 运行环境 : Windows 10

import requests
from bs4 import BeautifulSoup

def NBAReporter():
# 基础数据定义
baidu_nba_url = "https://tiyu.baidu.com/match/NBA/"
request_url = "https:"
nba_list = []
today_list = []

# 访问网址
nba_res = requests.get(baidu_nba_url)
# print(nba_res.text)

# 开始使用解析器
nba_soup = BeautifulSoup(nba_res.text, "html.parser")
nba_main = nba_soup.main
# print(nba_main)

nba_div = nba_main.find_all("div", class_ = "wa-match-schedule-list-wrapper")

for i in nba_div:
# 获取比赛时间
today = i.find("div", class_ = "date").string.strip()
# 获取比赛的次数
nba_times = i.find("div", class_ = "list-num c-color").string
# 获取详细的比赛地址
nba_href = i.find_all("div", class_ = "wa-match-schedule-list-item c-line-bottom")

for url_nba in nba_href:
url_nba = url_nba.a
url_href = url_nba["href"]

real_url = request_url + url_href
# print(real_url)

# 获取详细数据
vs_time = url_nba.find("div", class_ = "font-14 c-gap-bottom-small").string
vs_finals = url_nba.find("div",class_ = "font-12 c-color-gray").string

team_row_1 = url_nba.find("div", class_ = "team-row")
team_row_2 = url_nba.find("div", class_ = "c-gap-top-small team-row")

"""team_row_1_jpg = team_row_1.find("div", class_ = "inline-block")["style"]
team_row_2_jpg = team_row_2.find("div", class_ = "inline-block")["style"]
print(team_row_1_jpg,team_row_2_jpg)"""
team_row_1_name = team_row_1.find("span", class_ = "inline-block team-name team-name-360 team-name-320 c-line-clamp1").string
team_row_2_name = team_row_2.find("span", class_ = "inline-block team-name team-name-360 team-name-320").string
# print(team_row_1_name,team_row_2_name)
team_row_1_score = team_row_1.find("span", class_ = "inline-block team-score-num c-line-clamp1").string
team_row_2_score = team_row_2.find("span", class_ = "inline-block team-score-num c-line-clamp1").string
# print(team_row_1_score,team_row_2_score)

"""import re # 导入re库,不过最好还是在最前面导入,这里是为了演示的需要

team_row_1_jpg_url = re.search(r'background:url(.*)', team_row_1_jpg)
team_row_1_jpg_url = team_row_1_jpg_url.group(1)
team_row_2_jpg_url = re.search(r'background:url(.*)', team_row_2_jpg)
team_row_2_jpg_url = team_row_2_jpg_url.group(1)"""

nba = [ today, nba_times,"","",
vs_time, vs_finals, team_row_1_name, team_row_2_name,
"","", team_row_1_score, team_row_2_score
]

nba_list.append(nba)
today_list.append(today)

return nba_list,today_list

效果演示

Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI功能

转载声明

本文于2021年6月14日首发自CSDN,如需转载,请附上原文链接:Python利用PyQt5制作一个获取网络实时数据NBA数据播报GUI

来源:https://blog.csdn.net/qq_45030271/article/details/117884516

标签:Python,网络实时数据,数据播报
0
投稿

猜你喜欢

  • javascript判断一个元素是否数组

    2009-07-31 12:48:00
  • python使用cv2库、下载opencv库的方法

    2022-09-05 00:45:09
  • UCDChina.com 关于用户期望的讨论

    2008-07-10 11:55:00
  • jupyternotebook 撤销删除的操作方式

    2021-04-06 22:12:01
  • 微信小程序中使用wxss加载图片并实现动画效果

    2024-04-29 13:15:27
  • oracle保留两位小数解决方案

    2024-01-25 03:22:37
  • Django 使用VScode 创建工程的详细步骤

    2023-02-01 02:49:19
  • 聊聊Python对CSV文件的读取与写入问题

    2023-09-26 09:42:29
  • Python3.7 新特性之dataclass装饰器

    2021-05-11 13:13:40
  • 如何用Axure制作Tab页签

    2009-02-08 17:53:00
  • 通过遮罩层实现浮层DIV登录的js代码

    2024-06-24 00:08:58
  • tensorflow 限制显存大小的实现

    2023-03-04 02:19:59
  • Python字典推导式将cookie字符串转化为字典解析

    2023-02-26 14:22:17
  • Go 结构体序列化的实现

    2024-05-21 10:26:40
  • MSXML2家族探秘

    2008-03-03 12:35:00
  • Django rest framework工具包简单用法示例

    2022-05-17 12:00:21
  • win10下MySQL 8.0登录Access denied for user‘root’@‘localhost’ (using password: YES)问题的解决方法

    2024-01-19 05:31:09
  • python中的编码和解码及\\x和\\u问题

    2023-11-02 14:46:31
  • MySql 8.0.16版本安装提示已经不使用“UTF8B3”而是使用“UTF8B4”问题

    2024-01-23 12:43:57
  • 数据库Mysql性能优化详解

    2024-01-16 16:45:47
  • asp之家 网络编程 m.aspxhome.com