基于Keras的格式化输出Loss实现方式

作者:鹊踏枝-码农 时间:2021-10-20 20:44:00 

在win7 64位,Anaconda安装的Python3.6.1下安装的TensorFlow与Keras,Keras的backend为TensorFlow。在运行Mask R-CNN时,在进行调试时想知道PyCharm (Python IDE)底部窗口输出的Loss格式是在哪里定义的,如下图红框中所示:

基于Keras的格式化输出Loss实现方式

图1 训练过程的Loss格式化输出

在上图红框中,Loss的输出格式是在哪里定义的呢?有一点是明确的,即上图红框中的内容是在训练的时候输出的。那么先来看一下Mask R-CNN的训练过程。Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用 fit 函数。然而由于Mask R-CNN训练数据巨大,不能一次性全部载入,否则太消耗内存。于是采用生成器的方式一次载入一个batch的数据,而且是在用到这个batch的数据才开始载入的,那么它的训练函数如下:


self.keras_model.fit_generator(
  train_generator,
  initial_epoch=self.epoch,
  epochs=epochs,
  steps_per_epoch=self.config.STEPS_PER_EPOCH,
  callbacks=callbacks,
  validation_data=val_generator,
  validation_steps=self.config.VALIDATION_STEPS,
  max_queue_size=100,
  workers=workers,
  use_multiprocessing=False,
 )

这里训练模型的函数相应的为 fit_generator 函数。注意其中的参数callbacks=callbacks,这个参数在输出红框中的内容起到了关键性的作用。下面看一下callbacks的值:


# Callbacks
 callbacks = [
  keras.callbacks.TensorBoard(log_dir=self.log_dir,
         histogram_freq=0, write_graph=True, write_images=False),
  keras.callbacks.ModelCheckpoint(self.checkpoint_path,
          verbose=0, save_weights_only=True),
 ]

在输出红框中的内容所需的数据均保存在self.log_dir下。然后调试进入self.keras_model.fit_generator函数,进入keras,legacy.interfaces的legacy_support(func)函数,如下所示:


def legacy_support(func):
 @six.wraps(func)
 def wrapper(*args, **kwargs):
  if object_type == 'class':
   object_name = args[0].__class__.__name__
  else:
   object_name = func.__name__
  if preprocessor:
   args, kwargs, converted = preprocessor(args, kwargs)
  else:
   converted = []
  if check_positional_args:
   if len(args) > len(allowed_positional_args) + 1:
    raise TypeError('`' + object_name +
        '` can accept only ' +
        str(len(allowed_positional_args)) +
        ' positional arguments ' +
        str(tuple(allowed_positional_args)) +
        ', but you passed the following '
        'positional arguments: ' +
        str(list(args[1:])))
  for key in value_conversions:
   if key in kwargs:
    old_value = kwargs[key]
    if old_value in value_conversions[key]:
     kwargs[key] = value_conversions[key][old_value]
  for old_name, new_name in conversions:
   if old_name in kwargs:
    value = kwargs.pop(old_name)
    if new_name in kwargs:
     raise_duplicate_arg_error(old_name, new_name)
    kwargs[new_name] = value
    converted.append((new_name, old_name))
  if converted:
   signature = '`' + object_name + '('
   for i, value in enumerate(args[1:]):
    if isinstance(value, six.string_types):
     signature += '"' + value + '"'
    else:
     if isinstance(value, np.ndarray):
      str_val = 'array'
     else:
      str_val = str(value)
     if len(str_val) > 10:
      str_val = str_val[:10] + '...'
     signature += str_val
    if i < len(args[1:]) - 1 or kwargs:
     signature += ', '
   for i, (name, value) in enumerate(kwargs.items()):
    signature += name + '='
    if isinstance(value, six.string_types):
     signature += '"' + value + '"'
    else:
     if isinstance(value, np.ndarray):
      str_val = 'array'
     else:
      str_val = str(value)
     if len(str_val) > 10:
      str_val = str_val[:10] + '...'
     signature += str_val
    if i < len(kwargs) - 1:
     signature += ', '
   signature += ')`'
   warnings.warn('Update your `' + object_name +
       '` call to the Keras 2 API: ' + signature, stacklevel=2)
  return func(*args, **kwargs)
 wrapper._original_function = func
 return wrapper
return legacy_support

在上述代码的倒数第4行的return func(*args, **kwargs)处返回func,func为fit_generator函数,现调试进入fit_generator函数,该函数定义在keras.engine.training模块内的fit_generator函数,调试进入函数callbacks.on_epoch_begin(epoch),如下所示:


# Construct epoch logs.
  epoch_logs = {}
  while epoch < epochs:
   for m in self.stateful_metric_functions:
    m.reset_states()
   callbacks.on_epoch_begin(epoch)

调试进入到callbacks.on_epoch_begin(epoch)函数,进入on_epoch_begin函数,如下所示:


def on_epoch_begin(self, epoch, logs=None):
 """Called at the start of an epoch.
 # Arguments
  epoch: integer, index of epoch.
  logs: dictionary of logs.
 """
 logs = logs or {}
 for callback in self.callbacks:
  callback.on_epoch_begin(epoch, logs)
 self._delta_t_batch = 0.
 self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
 self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

在上述函数on_epoch_begin中调试进入callback.on_epoch_begin(epoch, logs)函数,转到类ProgbarLogger(Callback)中定义的on_epoch_begin函数,如下所示:


class ProgbarLogger(Callback):
"""Callback that prints metrics to stdout.
# Arguments
 count_mode: One of "steps" or "samples".
  Whether the progress bar should
  count samples seen or steps (batches) seen.
 stateful_metrics: Iterable of string names of metrics that
  should *not* be averaged over an epoch.
  Metrics in this list will be logged as-is.
  All others will be averaged over time (e.g. loss, etc).
# Raises
 ValueError: In case of invalid `count_mode`.
"""

def __init__(self, count_mode='samples',
    stateful_metrics=None):
 super(ProgbarLogger, self).__init__()
 if count_mode == 'samples':
  self.use_steps = False
 elif count_mode == 'steps':
  self.use_steps = True
 else:
  raise ValueError('Unknown `count_mode`: ' + str(count_mode))
 if stateful_metrics:
  self.stateful_metrics = set(stateful_metrics)
 else:
  self.stateful_metrics = set()

def on_train_begin(self, logs=None):
 self.verbose = self.params['verbose']
 self.epochs = self.params['epochs']

def on_epoch_begin(self, epoch, logs=None):
 if self.verbose:
  print('Epoch %d/%d' % (epoch + 1, self.epochs))
  if self.use_steps:
   target = self.params['steps']
  else:
   target = self.params['samples']
  self.target = target
  self.progbar = Progbar(target=self.target,
        verbose=self.verbose,
        stateful_metrics=self.stateful_metrics)
 self.seen = 0

在上述代码的

print('Epoch %d/%d' % (epoch + 1, self.epochs))

输出

Epoch 1/40(如红框中所示内容的第一行)。

然后返回到keras.engine.training模块内的fit_generator函数,执行到self.train_on_batch函数,如下所示:


outs = self.train_on_batch(x, y,
    sample_weight=sample_weight,
    class_weight=class_weight)

if not isinstance(outs, list):
     outs = [outs]
    for l, o in zip(out_labels, outs):
     batch_logs[l] = o

callbacks.on_batch_end(batch_index, batch_logs)

batch_index += 1
    steps_done += 1

调试进入上述代码中的callbacks.on_batch_end(batch_index, batch_logs)函数,进入到on_batch_end函数后,该函数的定义如下所示:


def on_batch_end(self, batch, logs=None):
 """Called at the end of a batch.
 # Arguments
  batch: integer, index of batch within the current epoch.
  logs: dictionary of logs.
 """
 logs = logs or {}
 if not hasattr(self, '_t_enter_batch'):
  self._t_enter_batch = time.time()
 self._delta_t_batch = time.time() - self._t_enter_batch
 t_before_callbacks = time.time()
 for callback in self.callbacks:
  callback.on_batch_end(batch, logs)
 self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
 delta_t_median = np.median(self._delta_ts_batch_end)
 if (self._delta_t_batch > 0. and
  (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
  warnings.warn('Method on_batch_end() is slow compared '
      'to the batch update (%f). Check your callbacks.'
      % delta_t_median)

接着继续调试进入上述代码中的callback.on_batch_end(batch, logs)函数,进入到在类中ProgbarLogger(Callback)定义的on_batch_end函数,如下所示:


def on_batch_end(self, batch, logs=None):
 logs = logs or {}
 batch_size = logs.get('size', 0)
 if self.use_steps:
  self.seen += 1
 else:
  self.seen += batch_size

for k in self.params['metrics']:
  if k in logs:
   self.log_values.append((k, logs[k]))

# Skip progbar update for the last batch;
 # will be handled by on_epoch_end.
 if self.verbose and self.seen < self.target:
  self.progbar.update(self.seen, self.log_values)

然后执行到上述代码的最后一行self.progbar.update(self.seen, self.log_values),调试进入update函数,该函数定义在模块keras.utils.generic_utils中的类Progbar(object)定义的函数。类的定义及方法如下所示:


class Progbar(object):
"""Displays a progress bar.
# Arguments
 target: Total number of steps expected, None if unknown.
 width: Progress bar width on screen.
 verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
 stateful_metrics: Iterable of string names of metrics that
  should *not* be averaged over time. Metrics in this list
  will be displayed as-is. All others will be averaged
  by the progbar before display.
 interval: Minimum visual progress update interval (in seconds).
"""

def __init__(self, target, width=30, verbose=1, interval=0.05,
    stateful_metrics=None):
 self.target = target
 self.width = width
 self.verbose = verbose
 self.interval = interval
 if stateful_metrics:
  self.stateful_metrics = set(stateful_metrics)
 else:
  self.stateful_metrics = set()

self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
        sys.stdout.isatty()) or
        'ipykernel' in sys.modules)
 self._total_width = 0
 self._seen_so_far = 0
 self._values = collections.OrderedDict()
 self._start = time.time()
 self._last_update = 0

def update(self, current, values=None):
 """Updates the progress bar.
 # Arguments
  current: Index of current step.
  values: List of tuples:
   `(name, value_for_last_step)`.
   If `name` is in `stateful_metrics`,
   `value_for_last_step` will be displayed as-is.
   Else, an average of the metric over time will be displayed.
 """
 values = values or []
 for k, v in values:
  if k not in self.stateful_metrics:
   if k not in self._values:
    self._values[k] = [v * (current - self._seen_so_far),
         current - self._seen_so_far]
   else:
    self._values[k][0] += v * (current - self._seen_so_far)
    self._values[k][1] += (current - self._seen_so_far)
  else:
   # Stateful metrics output a numeric value. This representation
   # means "take an average from a single value" but keeps the
   # numeric formatting.
   self._values[k] = [v, 1]
 self._seen_so_far = current

now = time.time()
 info = ' - %.0fs' % (now - self._start)
 if self.verbose == 1:
  if (now - self._last_update < self.interval and
    self.target is not None and current < self.target):
   return

prev_total_width = self._total_width
  if self._dynamic_display:
   sys.stdout.write('\b' * prev_total_width)
   sys.stdout.write('\r')
  else:
   sys.stdout.write('\n')

if self.target is not None:
   numdigits = int(np.floor(np.log10(self.target))) + 1
   barstr = '%%%dd/%d [' % (numdigits, self.target)
   bar = barstr % current
   prog = float(current) / self.target
   prog_width = int(self.width * prog)
   if prog_width > 0:
    bar += ('=' * (prog_width - 1))
    if current < self.target:
     bar += '>'
    else:
     bar += '='
   bar += ('.' * (self.width - prog_width))
   bar += ']'
  else:
   bar = '%7d/Unknown' % current

self._total_width = len(bar)
  sys.stdout.write(bar)

if current:
   time_per_unit = (now - self._start) / current
  else:
   time_per_unit = 0
  if self.target is not None and current < self.target:
   eta = time_per_unit * (self.target - current)
   if eta > 3600:
    eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
   elif eta > 60:
    eta_format = '%d:%02d' % (eta // 60, eta % 60)
   else:
    eta_format = '%ds' % eta

info = ' - ETA: %s' % eta_format
  else:
   if time_per_unit >= 1:
    info += ' %.0fs/step' % time_per_unit
   elif time_per_unit >= 1e-3:
    info += ' %.0fms/step' % (time_per_unit * 1e3)
   else:
    info += ' %.0fus/step' % (time_per_unit * 1e6)

for k in self._values:
   info += ' - %s:' % k
   if isinstance(self._values[k], list):
    avg = np.mean(
     self._values[k][0] / max(1, self._values[k][1]))
    if abs(avg) > 1e-3:
     info += ' %.4f' % avg
    else:
     info += ' %.4e' % avg
   else:
    info += ' %s' % self._values[k]

self._total_width += len(info)
  if prev_total_width > self._total_width:
   info += (' ' * (prev_total_width - self._total_width))

if self.target is not None and current >= self.target:
   info += '\n'

sys.stdout.write(info)
  sys.stdout.flush()

elif self.verbose == 2:
  if self.target is None or current >= self.target:
   for k in self._values:
    info += ' - %s:' % k
    avg = np.mean(
     self._values[k][0] / max(1, self._values[k][1]))
    if avg > 1e-3:
     info += ' %.4f' % avg
    else:
     info += ' %.4e' % avg
   info += '\n'

sys.stdout.write(info)
   sys.stdout.flush()

self._last_update = now

def add(self, n, values=None):
 self.update(self._seen_so_far + n, values)

重点是上述代码中的update(self, current, values=None)函数,在该函数内设置断点,即可调入该函数。下面重点分析上述代码中的几个输出条目:

1. sys.stdout.write('\n') #换行

2. sys.stdout.write('bar') #输出 [..................],其中bar= [..................];

3. sys.stdout.write(info) #输出loss格式,其中info='- ETA:...';

4. sys.stdout.flush() #刷新缓存,立即得到输出。

通过对Mask R-CNN代码的调试分析可知,图1中的红框中的训练过程中的Loss格式化输出是由built-in模块实现的。若想得到类似的格式化输出,关键在self.keras_model.fit_generator函数中传入callbacks参数和callbacks中内容的定义。

来源:https://blog.csdn.net/u011501388/article/details/81088690

标签:Keras,格式化,输出,Loss
0
投稿

猜你喜欢

  • DHTML中重要的属性方法

    2008-06-21 17:13:00
  • 网页常用特效整理:中级篇

    2013-07-15 13:43:32
  • python中的psutil模块详解(cpu、内存、磁盘情况、结束指定进程)

    2021-12-19 23:33:04
  • 利用pandas向一个csv文件追加写入数据的实现示例

    2022-04-09 14:51:56
  • Javascript语法检查插件 jsLint for Vim

    2009-03-11 16:37:00
  • Python文件读写及常用文件的打开方式

    2023-04-21 10:50:38
  • 成功解决ValueError: Supported target types are:('binary', 'multiclass'). Got 'continuous' instead.

    2023-01-24 03:59:00
  • Python进程间的通信一起来了解下

    2022-10-27 01:41:30
  • php自定义函数实现二维数组按指定key排序的方法

    2023-06-27 09:54:36
  • 图片放大镜jquery.jqzoom.js使用实例附放大镜图标

    2024-04-30 08:51:05
  • 在 mysql 中 定义 数据库,表,列时,设定的各个的编码格式

    2010-11-11 11:58:00
  • python接口自动化之ConfigParser配置文件的使用详解

    2023-09-07 02:56:04
  • Python3里的super()和__class__使用介绍

    2022-06-27 09:29:35
  • Vue快速实现通用表单验证的方法

    2024-04-09 10:45:06
  • Python爬虫之批量下载喜马拉雅音频

    2022-09-25 20:18:27
  • Python IDE PyCharm的基本快捷键和配置简介

    2021-09-18 07:08:10
  • 数据库疑难讲解:改善SQL Server内存管理

    2009-10-29 13:30:00
  • 微软工程师讲解SQL server阻塞

    2008-01-05 14:02:00
  • PHP与以太坊交互详解

    2023-10-21 13:59:36
  • MySQL中组合字段之concat()

    2024-01-26 04:36:54
  • asp之家 网络编程 m.aspxhome.com