Python著名游戏实战之方块连接 我的世界

作者:顾木子吖 时间:2022-12-10 06:25:50 

导语

《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

Python著名游戏实战之方块连接 我的世界

方块连接世界,云游大好河山。

Python著名游戏实战之方块连接 我的世界

国庆不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

Python著名游戏实战之方块连接 我的世界

至少我作为一个没玩过的人来说确实是很牛逼了~

至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

Python著名游戏实战之方块连接 我的世界

(1)《我是世界》游戏规则。

移动—前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

选择建筑材料—砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

ESC退出程序。

(2)主要程序代码。


'''
主题:
我的世界1.0版本
'''
from __future__ import division

import sys
import math
import random
import time

from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse

TICKS_PER_SEC = 60

# Size of sectors used to ease block loading.
SECTOR_SIZE = 16

WALKING_SPEED = 5
FLYING_SPEED = 15

GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0 # About the height of a block.
# To derive the formula for calculating jump speed, first solve
#    v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. This gives:
#    t = - v_0 / a
# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
#    s = s_0 + v_0 * t + (a * t^2) / 2
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info[0] >= 3:
   xrange = range

def cube_vertices(x, y, z, n):
   """ Return the vertices of the cube at position x, y, z with size 2*n.
   """
   return [
       x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top
       x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom
       x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left
       x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right
       x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front
       x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back
   ]

def tex_coord(x, y, n=4):
   """ Return the bounding vertices of the texture square.
   """
   m = 1.0 / n
   dx = x * m
   dy = y * m
   return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m

def tex_coords(top, bottom, side):
   """ Return a list of the texture squares for the top, bottom and side.
   """
   top = tex_coord(*top)
   bottom = tex_coord(*bottom)
   side = tex_coord(*side)
   result = []
   result.extend(top)
   result.extend(bottom)
   result.extend(side * 4)
   return result

TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))

FACES = [
   ( 0, 1, 0),
   ( 0,-1, 0),
   (-1, 0, 0),
   ( 1, 0, 0),
   ( 0, 0, 1),
   ( 0, 0,-1),
]

def normalize(position):
   """ Accepts `position` of arbitrary precision and returns the block
   containing that position.
   Parameters
   ----------
   position : tuple of len 3
   Returns
   -------
   block_position : tuple of ints of len 3
   """
   x, y, z = position
   x, y, z = (int(round(x)), int(round(y)), int(round(z)))
   return (x, y, z)

def sectorize(position):
   """ Returns a tuple representing the sector for the given `position`.
   Parameters
   ----------
   position : tuple of len 3
   Returns
   -------
   sector : tuple of len 3
   """
   x, y, z = normalize(position)
   x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
   return (x, 0, z)

class Model(object):

def __init__(self):

# A Batch is a collection of vertex lists for batched rendering.
       self.batch = pyglet.graphics.Batch()

# A TextureGroup manages an OpenGL texture.
       self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

# A mapping from position to the texture of the block at that position.
       # This defines all the blocks that are currently in the world.
       self.world = {}

# Same mapping as `world` but only contains blocks that are shown.
       self.shown = {}

# Mapping from position to a pyglet `VertextList` for all shown blocks.
       self._shown = {}

# Mapping from sector to a list of positions inside that sector.
       self.sectors = {}

# Simple function queue implementation. The queue is populated with
       # _show_block() and _hide_block() calls
       self.queue = deque()

self._initialize()

def _initialize(self):
       """ Initialize the world by placing all the blocks.
       """
       n = 80  # 1/2 width and height of world
       s = 1  # step size
       y = 0  # initial y height
       for x in xrange(-n, n + 1, s):
           for z in xrange(-n, n + 1, s):
               # create a layer stone an grass everywhere.
               self.add_block((x, y - 2, z), GRASS, immediate=False)
               self.add_block((x, y - 3, z), STONE, immediate=False)
               if x in (-n, n) or z in (-n, n):
                   # create outer walls.
                   for dy in xrange(-2, 3):
                       self.add_block((x, y + dy, z), STONE, immediate=False)

# generate the hills randomly
       o = n - 10
       for _ in xrange(120):
           a = random.randint(-o, o)  # x position of the hill
           b = random.randint(-o, o)  # z position of the hill
           c = -1  # base of the hill
           h = random.randint(1, 6)  # height of the hill
           s = random.randint(4, 8)  # 2 * s is the side length of the hill
           d = 1  # how quickly to taper off the hills
           t = random.choice([GRASS, SAND, BRICK])
           for y in xrange(c, c + h):
               for x in xrange(a - s, a + s + 1):
                   for z in xrange(b - s, b + s + 1):
                       if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
                           continue
                       if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
                           continue
                       self.add_block((x, y, z), t, immediate=False)
               s -= d  # decrement side lenth so hills taper off

def hit_test(self, position, vector, max_distance=8):
       """ Line of sight search from current position. If a block is
       intersected it is returned, along with the block previously in the line
       of sight. If no block is found, return None, None.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position to check visibility from.
       vector : tuple of len 3
           The line of sight vector.
       max_distance : int
           How many blocks away to search for a hit.
       """
       m = 8
       x, y, z = position
       dx, dy, dz = vector
       previous = None
       for _ in xrange(max_distance * m):
           key = normalize((x, y, z))
           if key != previous and key in self.world:
               return key, previous
           previous = key
           x, y, z = x + dx / m, y + dy / m, z + dz / m
       return None, None

def exposed(self, position):
       """ Returns False is given `position` is surrounded on all 6 sides by
       blocks, True otherwise.
       """
       x, y, z = position
       for dx, dy, dz in FACES:
           if (x + dx, y + dy, z + dz) not in self.world:
               return True
       return False

def add_block(self, position, texture, immediate=True):
       """ Add a block with the given `texture` and `position` to the world.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position of the block to add.
       texture : list of len 3
           The coordinates of the texture squares. Use `tex_coords()` to
           generate.
       immediate : bool
           Whether or not to draw the block immediately.
       """
       if position in self.world:
           self.remove_block(position, immediate)
       self.world[position] = texture
       self.sectors.setdefault(sectorize(position), []).append(position)
       if immediate:
           if self.exposed(position):
               self.show_block(position)
           self.check_neighbors(position)

def remove_block(self, position, immediate=True):
       """ Remove the block at the given `position`.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position of the block to remove.
       immediate : bool
           Whether or not to immediately remove block from canvas.
       """
       del self.world[position]
       self.sectors[sectorize(position)].remove(position)
       if immediate:
           if position in self.shown:
               self.hide_block(position)
           self.check_neighbors(position)

def check_neighbors(self, position):
       """ Check all blocks surrounding `position` and ensure their visual
       state is current. This means hiding blocks that are not exposed and
       ensuring that all exposed blocks are shown. Usually used after a block
       is added or removed.
       """
       x, y, z = position
       for dx, dy, dz in FACES:
           key = (x + dx, y + dy, z + dz)
           if key not in self.world:
               continue
           if self.exposed(key):
               if key not in self.shown:
                   self.show_block(key)
           else:
               if key in self.shown:
                   self.hide_block(key)

def show_block(self, position, immediate=True):
       """ Show the block at the given `position`. This method assumes the
       block has already been added with add_block()
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position of the block to show.
       immediate : bool
           Whether or not to show the block immediately.
       """
       texture = self.world[position]
       self.shown[position] = texture
       if immediate:
           self._show_block(position, texture)
       else:
           self._enqueue(self._show_block, position, texture)

def _show_block(self, position, texture):
       """ Private implementation of the `show_block()` method.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position of the block to show.
       texture : list of len 3
           The coordinates of the texture squares. Use `tex_coords()` to
           generate.
       """
       x, y, z = position
       vertex_data = cube_vertices(x, y, z, 0.5)
       texture_data = list(texture)
       # create vertex list
       # FIXME Maybe `add_indexed()` should be used instead
       self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
           ('v3f/static', vertex_data),
           ('t2f/static', texture_data))

def hide_block(self, position, immediate=True):
       """ Hide the block at the given `position`. Hiding does not remove the
       block from the world.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position of the block to hide.
       immediate : bool
           Whether or not to immediately remove the block from the canvas.
       """
       self.shown.pop(position)
       if immediate:
           self._hide_block(position)
       else:
           self._enqueue(self._hide_block, position)

def _hide_block(self, position):
       """ Private implementation of the 'hide_block()` method.
       """
       self._shown.pop(position).delete()

def show_sector(self, sector):
       """ Ensure all blocks in the given sector that should be shown are
       drawn to the canvas.
       """
       for position in self.sectors.get(sector, []):
           if position not in self.shown and self.exposed(position):
               self.show_block(position, False)

def hide_sector(self, sector):
       """ Ensure all blocks in the given sector that should be hidden are
       removed from the canvas.
       """
       for position in self.sectors.get(sector, []):
           if position in self.shown:
               self.hide_block(position, False)

def change_sectors(self, before, after):
       """ Move from sector `before` to sector `after`. A sector is a
       contiguous x, y sub-region of world. Sectors are used to speed up
       world rendering.
       """
       before_set = set()
       after_set = set()
       pad = 4
       for dx in xrange(-pad, pad + 1):
           for dy in [0]:  # xrange(-pad, pad + 1):
               for dz in xrange(-pad, pad + 1):
                   if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
                       continue
                   if before:
                       x, y, z = before
                       before_set.add((x + dx, y + dy, z + dz))
                   if after:
                       x, y, z = after
                       after_set.add((x + dx, y + dy, z + dz))
       show = after_set - before_set
       hide = before_set - after_set
       for sector in show:
           self.show_sector(sector)
       for sector in hide:
           self.hide_sector(sector)

def _enqueue(self, func, *args):
       """ Add `func` to the internal queue.
       """
       self.queue.append((func, args))

def _dequeue(self):
       """ Pop the top function from the internal queue and call it.
       """
       func, args = self.queue.popleft()
       func(*args)

def process_queue(self):
       """ Process the entire queue while taking periodic breaks. This allows
       the game loop to run smoothly. The queue contains calls to
       _show_block() and _hide_block() so this method should be called if
       add_block() or remove_block() was called with immediate=False
       """
       start = time.clock()
       while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:
           self._dequeue()

def process_entire_queue(self):
       """ Process the entire queue with no breaks.
       """
       while self.queue:
           self._dequeue()

class Window(pyglet.window.Window):

def __init__(self, *args, **kwargs):
       super(Window, self).__init__(*args, **kwargs)

# Whether or not the window exclusively captures the mouse.
       self.exclusive = False

# When flying gravity has no effect and speed is increased.
       self.flying = False

# Strafing is moving lateral to the direction you are facing,
       # e.g. moving to the left or right while continuing to face forward.
       #
       # First element is -1 when moving forward, 1 when moving back, and 0
       # otherwise. The second element is -1 when moving left, 1 when moving
       # right, and 0 otherwise.
       self.strafe = [0, 0]

# Current (x, y, z) position in the world, specified with floats. Note
       # that, perhaps unlike in math class, the y-axis is the vertical axis.
       self.position = (0, 0, 0)

# First element is rotation of the player in the x-z plane (ground
       # plane) measured from the z-axis down. The second is the rotation
       # angle from the ground plane up. Rotation is in degrees.
       #
       # The vertical plane rotation ranges from -90 (looking straight down) to
       # 90 (looking straight up). The horizontal rotation range is unbounded.
       self.rotation = (0, 0)

# Which sector the player is currently in.
       self.sector = None

# The crosshairs at the center of the screen.
       self.reticle = None

# Velocity in the y (upward) direction.
       self.dy = 0

# A list of blocks the player can place. Hit num keys to cycle.
       self.inventory = [BRICK, GRASS, SAND]

# The current block the user can place. Hit num keys to cycle.
       self.block = self.inventory[0]

# Convenience list of num keys.
       self.num_keys = [
           key._1, key._2, key._3, key._4, key._5,
           key._6, key._7, key._8, key._9, key._0]

# Instance of the model that handles the world.
       self.model = Model()

# The label that is displayed in the top left of the canvas.
       self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
           x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
           color=(0, 0, 0, 255))

# This call schedules the `update()` method to be called
       # TICKS_PER_SEC. This is the main game event loop.
       pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

def set_exclusive_mouse(self, exclusive):
       """ If `exclusive` is True, the game will capture the mouse, if False
       the game will ignore the mouse.
       """
       super(Window, self).set_exclusive_mouse(exclusive)
       self.exclusive = exclusive

def get_sight_vector(self):
       """ Returns the current line of sight vector indicating the direction
       the player is looking.
       """
       x, y = self.rotation
       # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
       # is 1 when looking ahead parallel to the ground and 0 when looking
       # straight up or down.
       m = math.cos(math.radians(y))
       # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
       # looking straight up.
       dy = math.sin(math.radians(y))
       dx = math.cos(math.radians(x - 90)) * m
       dz = math.sin(math.radians(x - 90)) * m
       return (dx, dy, dz)

def get_motion_vector(self):
       """ Returns the current motion vector indicating the velocity of the
       player.
       Returns
       -------
       vector : tuple of len 3
           Tuple containing the velocity in x, y, and z respectively.
       """
       if any(self.strafe):
           x, y = self.rotation
           strafe = math.degrees(math.atan2(*self.strafe))
           y_angle = math.radians(y)
           x_angle = math.radians(x + strafe)
           if self.flying:
               m = math.cos(y_angle)
               dy = math.sin(y_angle)
               if self.strafe[1]:
                   # Moving left or right.
                   dy = 0.0
                   m = 1
               if self.strafe[0] > 0:
                   # Moving backwards.
                   dy *= -1
               # When you are flying up or down, you have less left and right
               # motion.
               dx = math.cos(x_angle) * m
               dz = math.sin(x_angle) * m
           else:
               dy = 0.0
               dx = math.cos(x_angle)
               dz = math.sin(x_angle)
       else:
           dy = 0.0
           dx = 0.0
           dz = 0.0
       return (dx, dy, dz)

def update(self, dt):
       """ This method is scheduled to be called repeatedly by the pyglet
       clock.
       Parameters
       ----------
       dt : float
           The change in time since the last call.
       """
       self.model.process_queue()
       sector = sectorize(self.position)
       if sector != self.sector:
           self.model.change_sectors(self.sector, sector)
           if self.sector is None:
               self.model.process_entire_queue()
           self.sector = sector
       m = 8
       dt = min(dt, 0.2)
       for _ in xrange(m):
           self._update(dt / m)

def _update(self, dt):
       """ Private implementation of the `update()` method. This is where most
       of the motion logic lives, along with gravity and collision detection.
       Parameters
       ----------
       dt : float
           The change in time since the last call.
       """
       # walking
       speed = FLYING_SPEED if self.flying else WALKING_SPEED
       d = dt * speed # distance covered this tick.
       dx, dy, dz = self.get_motion_vector()
       # New position in space, before accounting for gravity.
       dx, dy, dz = dx * d, dy * d, dz * d
       # gravity
       if not self.flying:
           # Update your vertical speed: if you are falling, speed up until you
           # hit terminal velocity; if you are jumping, slow down until you
           # start falling.
           self.dy -= dt * GRAVITY
           self.dy = max(self.dy, -TERMINAL_VELOCITY)
           dy += self.dy * dt
       # collisions
       x, y, z = self.position
       x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
       self.position = (x, y, z)

def collide(self, position, height):
       """ Checks to see if the player at the given `position` and `height`
       is colliding with any blocks in the world.
       Parameters
       ----------
       position : tuple of len 3
           The (x, y, z) position to check for collisions at.
       height : int or float
           The height of the player.
       Returns
       -------
       position : tuple of len 3
           The new position of the player taking into account collisions.
       """
       # How much overlap with a dimension of a surrounding block you need to
       # have to count as a collision. If 0, touching terrain at all counts as
       # a collision. If .49, you sink into the ground, as if walking through
       # tall grass. If >= .5, you'll fall through the ground.
       pad = 0.25
       p = list(position)
       np = normalize(position)
       for face in FACES:  # check all surrounding blocks
           for i in xrange(3):  # check each dimension independently
               if not face[i]:
                   continue
               # How much overlap you have with this dimension.
               d = (p[i] - np[i]) * face[i]
               if d < pad:
                   continue
               for dy in xrange(height):  # check each height
                   op = list(np)
                   op[1] -= dy
                   op[i] += face[i]
                   if tuple(op) not in self.model.world:
                       continue
                   p[i] -= (d - pad) * face[i]
                   if face == (0, -1, 0) or face == (0, 1, 0):
                       # You are colliding with the ground or ceiling, so stop
                       # falling / rising.
                       self.dy = 0
                   break
       return tuple(p)

def on_mouse_press(self, x, y, button, modifiers):
       """ Called when a mouse button is pressed. See pyglet docs for button
       amd modifier mappings.
       Parameters
       ----------
       x, y : int
           The coordinates of the mouse click. Always center of the screen if
           the mouse is captured.
       button : int
           Number representing mouse button that was clicked. 1 = left button,
           4 = right button.
       modifiers : int
           Number representing any modifying keys that were pressed when the
           mouse button was clicked.
       """
       if self.exclusive:
           vector = self.get_sight_vector()
           block, previous = self.model.hit_test(self.position, vector)
           if (button == mouse.RIGHT) or \
                   ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
               # ON OSX, control + left click = right click.
               if previous:
                   self.model.add_block(previous, self.block)
           elif button == pyglet.window.mouse.LEFT and block:
               texture = self.model.world[block]
               if texture != STONE:
                   self.model.remove_block(block)
       else:
           self.set_exclusive_mouse(True)

def on_mouse_motion(self, x, y, dx, dy):
       """ Called when the player moves the mouse.
       Parameters
       ----------
       x, y : int
           The coordinates of the mouse click. Always center of the screen if
           the mouse is captured.
       dx, dy : float
           The movement of the mouse.
       """
       if self.exclusive:
           m = 0.15
           x, y = self.rotation
           x, y = x + dx * m, y + dy * m
           y = max(-90, min(90, y))
           self.rotation = (x, y)

def on_key_press(self, symbol, modifiers):
       """ Called when the player presses a key. See pyglet docs for key
       mappings.
       Parameters
       ----------
       symbol : int
           Number representing the key that was pressed.
       modifiers : int
           Number representing any modifying keys that were pressed.
       """
       if symbol == key.W:
           self.strafe[0] -= 1
       elif symbol == key.S:
           self.strafe[0] += 1
       elif symbol == key.A:
           self.strafe[1] -= 1
       elif symbol == key.D:
           self.strafe[1] += 1
       elif symbol == key.SPACE:
           if self.dy == 0:
               self.dy = JUMP_SPEED
       elif symbol == key.ESCAPE:
           self.set_exclusive_mouse(False)
       elif symbol == key.TAB:
           self.flying = not self.flying
       elif symbol in self.num_keys:
           index = (symbol - self.num_keys[0]) % len(self.inventory)
           self.block = self.inventory[index]

def on_key_release(self, symbol, modifiers):
       """ Called when the player releases a key. See pyglet docs for key
       mappings.
       Parameters
       ----------
       symbol : int
           Number representing the key that was pressed.
       modifiers : int
           Number representing any modifying keys that were pressed.
       """
       if symbol == key.W:
           self.strafe[0] += 1
       elif symbol == key.S:
           self.strafe[0] -= 1
       elif symbol == key.A:
           self.strafe[1] += 1
       elif symbol == key.D:
           self.strafe[1] -= 1

def on_resize(self, width, height):
       """ Called when the window is resized to a new `width` and `height`.
       """
       # label
       self.label.y = height - 10
       # reticle
       if self.reticle:
           self.reticle.delete()
       x, y = self.width // 2, self.height // 2
       n = 10
       self.reticle = pyglet.graphics.vertex_list(4,
           ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
       )

def set_2d(self):
       """ Configure OpenGL to draw in 2d.
       """
       width, height = self.get_size()
       glDisable(GL_DEPTH_TEST)
       viewport = self.get_viewport_size()
       glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
       glMatrixMode(GL_PROJECTION)
       glLoadIdentity()
       glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
       glMatrixMode(GL_MODELVIEW)
       glLoadIdentity()

def set_3d(self):
       """ Configure OpenGL to draw in 3d.
       """
       width, height = self.get_size()
       glEnable(GL_DEPTH_TEST)
       viewport = self.get_viewport_size()
       glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
       glMatrixMode(GL_PROJECTION)
       glLoadIdentity()
       gluPerspective(65.0, width / float(height), 0.1, 60.0)
       glMatrixMode(GL_MODELVIEW)
       glLoadIdentity()
       x, y = self.rotation
       glRotatef(x, 0, 1, 0)
       glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
       x, y, z = self.position
       glTranslatef(-x, -y, -z)

def on_draw(self):
       """ Called by pyglet to draw the canvas.
       """
       self.clear()
       self.set_3d()
       glColor3d(1, 1, 1)
       self.model.batch.draw()
       self.draw_focused_block()
       self.set_2d()
       self.draw_label()
       self.draw_reticle()

def draw_focused_block(self):
       """ Draw black edges around the block that is currently under the
       crosshairs.
       """
       vector = self.get_sight_vector()
       block = self.model.hit_test(self.position, vector)[0]
       if block:
           x, y, z = block
           vertex_data = cube_vertices(x, y, z, 0.51)
           glColor3d(0, 0, 0)
           glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
           pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
           glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

def draw_label(self):
       """ Draw the label in the top left of the screen.
       """
       x, y, z = self.position
       self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
           pyglet.clock.get_fps(), x, y, z,
           len(self.model._shown), len(self.model.world))
       self.label.draw()

def draw_reticle(self):
       """ Draw the crosshairs in the center of the screen.
       """
       glColor3d(0, 0, 0)
       self.reticle.draw(GL_LINES)

def setup_fog():
   """ Configure the OpenGL fog properties.
   """
   # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
   # post-texturing color."
   glEnable(GL_FOG)
   # Set the fog color.
   glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
   # Say we have no preference between rendering speed and quality.
   glHint(GL_FOG_HINT, GL_DONT_CARE)
   # Specify the equation used to compute the blending factor.
   glFogi(GL_FOG_MODE, GL_LINEAR)
   # How close and far away fog starts and ends. The closer the start and end,
   # the denser the fog in the fog range.
   glFogf(GL_FOG_START, 20.0)
   glFogf(GL_FOG_END, 60.0)

def setup():
   """ Basic OpenGL configuration.
   """
   # Set the color of "clear", i.e. the sky, in rgba.
   glClearColor(0.5, 0.69, 1.0, 1)
   # Enable culling (not rendering) of back-facing facets -- facets that aren't
   # visible to you.
   glEnable(GL_CULL_FACE)
   # Set the texture minification/magnification function to GL_NEAREST (nearest
   # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
   # "is generally faster than GL_LINEAR, but it can produce textured 图片
   # with sharper edges because the transition between texture elements is not
   # as smooth."
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
   setup_fog()

def main():
   window = Window(width=1800, height=1600, caption='Pyglet', resizable=True)
   # Hide the mouse cursor and prevent the mouse from leaving the window.
   window.set_exclusive_mouse(True)
   setup()
   pyglet.app.run()

if __name__ == '__main__':
   main()

(3)效果图如下。

正常的截图:

Python著名游戏实战之方块连接 我的世界

Python著名游戏实战之方块连接 我的世界

飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

Python著名游戏实战之方块连接 我的世界

Python著名游戏实战之方块连接 我的世界

总结

总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

等一个大佬优化这款Python的我的世界!

Python著名游戏实战之方块连接 我的世界

你们的支持是我最大的动力!!mua 欢迎大家阅读往期的文章哦~

Python著名游戏实战之方块连接 我的世界

来源:https://blog.csdn.net/weixin_55822277/article/details/120669203

标签:Python,我的世界,Python,实战
0
投稿

猜你喜欢

  • python交换两个变量的值方法

    2022-07-28 10:10:48
  • Python Merge函数原理及用法解析

    2021-10-02 00:16:11
  • python安装cx_Oracle模块常见问题与解决方法

    2021-04-24 13:00:27
  • Python PyQt5学习之自定义信号

    2022-01-06 12:03:52
  • Windows下MySQL日志基本的查看以及导入导出用法教程

    2024-01-22 13:11:20
  • YOLOv5车牌识别实战教程(二)理论基础

    2021-11-08 09:16:06
  • 关于python字符串方法分类详解

    2023-12-30 22:51:44
  • python Pandas如何对数据集随机抽样

    2023-10-02 08:28:13
  • ORACLE 自动提交问题

    2009-06-19 17:58:00
  • MySQL分类排名和分组TOP N实例详解

    2024-01-24 11:23:16
  • zabbix进行数据库备份以及表分区的方法

    2024-01-16 13:01:46
  • flask 框架操作MySQL数据库简单示例

    2024-01-16 12:48:10
  • Python学习小技巧总结

    2021-09-21 09:28:49
  • asp开发中textarea常见问题

    2008-04-13 06:34:00
  • django框架F&Q 聚合与分组操作示例

    2021-05-21 02:13:56
  • 鼠标驱动图片变化

    2009-07-26 10:03:00
  • Python实现html转换为pdf报告(生成pdf报告)功能示例

    2023-11-07 02:31:17
  • Bootstrap编写一个兼容主流浏览器的受众巨幕式风格页面

    2024-05-02 17:31:43
  • Pytorch加载数据集的方式总结及补充

    2023-02-15 17:14:37
  • python清空命令行方式

    2023-12-08 09:50:35
  • asp之家 网络编程 m.aspxhome.com