Python绘制正余弦函数图像的方法

作者:Python编程时光 时间:2022-09-22 19:59:06 

今天打算通过绘制正弦和余弦函数,从默认的设置开始,一步一步地调整改进,让它变得好看,变成我们初高中学习过的图象那样。通过这个过程来学习如何进行对图表的一些元素的进行调整。

01. 简单绘图

matplotlib有一套允许定制各种属性的默认设置。你可以几乎控制matplotlib中的每一个默认属性:图像大小,每英寸点数,线宽,色彩和样式,子图(axes),坐标轴和网格属性,文字和字体属性,等等。

安装


pip install matplotlib

虽然matplotlib的默认设置在大多数情况下相当好,你却可能想要在一些特别的情形下更改一些属性。


from pylab import *

x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(x), np.sin(x)

plot(x,C)
plot(x,S)

show()

show image

Python绘制正余弦函数图像的方法

02. 设置基本元素

这边的基本元素主要有几下几点:

线的颜色,粗细,和线型 刻度和标签 还有图例

代码比较简单,基本上在我的第一讲内容里都讲过了。


import numpy as np
from matplotlib import pyplot as plt

plt.figure(figsize=(10,6), dpi=80)
x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(x), np.sin(x)

# 设置线的颜色,粗细,和线型
plt.plot(x, C, color="blue", linewidth=2.5, linestyle="-", label=r'$sin(x)$')
plt.plot(x, S, color="red", linewidth=2.5, linestyle="-", label=r'$cos(x)$')

# 如果觉得线条离边界太近了,可以加大距离
plt.xlim(x.min()*1.2, x.max()*1.2)
plt.ylim(C.min()*1.2, C.max()*1.2)

# 当前的刻度并不清晰,需要重新设定,并加上更直观的标签
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
  [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1,0,1],
  [r'$-1$', r'$0$', r'$1$'])

# 添加图例
plt.legend()

plt.show()

show image

Python绘制正余弦函数图像的方法

03. 移动轴线

还记得我们在初高中学习的三角函数图象,可不是这样,它应该是有四个象限的。而这里却是一个四四方方的图表。

所以接下来,我们要做的就是移动轴线,让它变成我们熟悉的样子。

我们只需要两轴线(x和y轴),所以我们需要将顶部和右边的轴线给隐藏起来(颜色设置为None即可)。


# plt.gca(),全称是get current axis
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

# 由于我们移动的是左边和底部的轴,所以不用设置这两个也可以
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

# 指定data类型,就是移动到指定数值
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))

关于 set_position() 这个函数中的data是啥意思?我查了下官网。解释如下

Python绘制正余弦函数图像的方法

然后最后发现,上面的写法可以用一定更简洁的方式设置,是等价的。


ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')

show image

Python绘制正余弦函数图像的方法

04. 添加注释

现在的图形部分已经成型,接下让我们现在使用annotate命令注解一些我们感兴趣的点。

我们选择 2π/3 作为我们想要注解的正弦和余弦值。我们将在曲线上做一个标记和一个垂直的虚线。然后,使用annotate命令来显示一个箭头和一些文本。


t = 2*np.pi/3

# 利用plt.plot绘制向下的一条垂直的线,利用plt.scatter绘制一个点。
plt.plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.cos(t),], 50, color ='blue')

plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
  xy=(t, np.sin(t)), xycoords='data',
  xytext=(+10, +30), textcoords='offset points', fontsize=16,
  arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

# 利用plt.plot绘制向上的一条垂直的线,利用plt.scatter绘制一个点。
plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='red')

plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
  xy=(t, np.cos(t)), xycoords='data',
  xytext=(-90, -50), textcoords='offset points', fontsize=16,
  arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

在这里,你可能会对 plt.annotate 这个函数的用法,有所陌生。这里也解释一下。

第一个参数,就是注释内容; 第二个参数, xy ,就是对哪一点进行注释; 第三个参数, xycoords ,指定类型,data 是说基于数值来定位; 第四个参数, xytext ,是注释的位置,结合第五个参数,就是根据偏移量来决定注释位置; 第五个参数, textcoords ,值为offset points,就是说是相对位置; 第六个参数, fontsize ,注释大小; 第七个参数, arrowprops ,对箭头的类型的一些设置。

show image

Python绘制正余弦函数图像的方法

05. 完整代码

以上都是对片段代码进行解释,这里放出完整的代码


import numpy as np
from matplotlib import pyplot as plt

plt.figure(figsize=(10,6), dpi=80)
x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(x), np.sin(x)

# 设置线的颜色,粗细,和线型
plt.plot(x, C, color="blue", linewidth=2.5, linestyle="-", label=r'$sin(x)$')
plt.plot(x, S, color="red", linewidth=2.5, linestyle="-", label=r'$cos(x)$')

# 如果觉得线条离边界太近了,可以加大距离
plt.xlim(x.min()*1.2, x.max()*1.2)
plt.ylim(C.min()*1.2, C.max()*1.2)

# 当前的刻度并不清晰,需要重新设定,并加上更直观的标签
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
  [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1,1],
  [r'$-1$', r'$1$'])

# 添加图例
plt.legend(loc='upper left')

# plt.gca(),全称是get current axis
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

# 由于我们移动的是左边和底部的轴,所以不用设置这两个也可以
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

# 指定data类型,就是移动到指定数值
# ax.spines['bottom'].set_position('zero')
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))

t = 2*np.pi/3

# 利用plt.plot绘制向下的一条垂直的线,利用plt.scatter绘制一个点。
plt.plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.cos(t),], 50, color ='blue')

plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
  xy=(t, np.sin(t)), xycoords='data',
  xytext=(+10, +30), textcoords='offset points', fontsize=16,
  arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

# 利用plt.plot绘制向上的一条垂直的线,利用plt.scatter绘制一个点。
plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='red')

plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
  xy=(t, np.cos(t)), xycoords='data',
  xytext=(-90, -50), textcoords='offset points', fontsize=16,
  arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plt.show()

绘制抛物线:


X1=np.linspace(-4,4,100,endpoint=True)
plt.plot(X1,(X1**2)/9)

来源:https://juejin.im/post/5b84d1f3f265da436152f9d4

标签:Python,正余弦函数
0
投稿

猜你喜欢

  • Python中第三方库Requests库的高级用法详解

    2022-04-10 21:25:50
  • CentOs7 64位 mysql 5.6.40源码安装过程

    2024-01-25 00:36:24
  • 栅格:一以贯之

    2008-07-22 12:19:00
  • sql查询表中根据某列排序的任意行语句

    2024-01-13 02:13:18
  • vue awesome swiper异步加载数据出现的bug问题

    2024-05-03 15:10:58
  • 关于ORA-04091异常的出现原因分析及解决方案

    2024-01-22 22:29:20
  • php遍历目录方法小结

    2023-11-17 12:49:40
  • Windows自动执行python脚本操作步骤

    2023-04-22 15:32:42
  • pandas groupby 用法实例详解

    2023-07-19 01:37:59
  • asp阻止中国ip访问访问

    2011-09-13 12:55:37
  • 在IPython中执行Python程序文件的示例

    2023-02-20 09:06:14
  • webstorm中配置nodejs环境及npm的实例

    2024-05-11 10:16:09
  • golang类型转换组件Cast的使用详解

    2024-05-08 10:22:01
  • mssql2005字符串连接方法 避免无效的连接错误

    2024-01-14 20:45:05
  • python numpy和list查询其中某个数的个数及定位方法

    2021-04-29 01:36:50
  • 微信小程序实现搜索功能

    2024-05-02 16:17:16
  • python2爬取百度贴吧指定关键字和图片代码实例

    2022-10-12 09:03:44
  • 全面了解JavaScript对象进阶

    2024-04-22 12:47:51
  • jquery 将disabled的元素置为enabled的三种方法

    2024-04-19 10:19:14
  • 可以在线创建文件夹吗?

    2009-11-01 18:07:00
  • asp之家 网络编程 m.aspxhome.com