keras处理欠拟合和过拟合的实例讲解
作者:Lzj000lzj 时间:2022-06-23 05:14:38
baseline
import tensorflow.keras.layers as layers
baseline_model = keras.Sequential(
[
layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
layers.Dense(16, activation='relu'),
layers.Dense(1, activation='sigmoid')
]
)
baseline_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
baseline_model.summary()
baseline_history = baseline_model.fit(train_data, train_labels,
epochs=20, batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
小模型
small_model = keras.Sequential(
[
layers.Dense(4, activation='relu', input_shape=(NUM_WORDS,)),
layers.Dense(4, activation='relu'),
layers.Dense(1, activation='sigmoid')
]
)
small_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
small_model.summary()
small_history = small_model.fit(train_data, train_labels,
epochs=20, batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
大模型
big_model = keras.Sequential(
[
layers.Dense(512, activation='relu', input_shape=(NUM_WORDS,)),
layers.Dense(512, activation='relu'),
layers.Dense(1, activation='sigmoid')
]
)
big_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
big_model.summary()
big_history = big_model.fit(train_data, train_labels,
epochs=20, batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
绘图比较上述三个模型
def plot_history(histories, key='binary_crossentropy'):
plt.figure(figsize=(16,10))
for name, history in histories:
val = plt.plot(history.epoch, history.history['val_'+key],
'--', label=name.title()+' Val')
plt.plot(history.epoch, history.history[key], color=val[0].get_color(),
label=name.title()+' Train')
plt.xlabel('Epochs')
plt.ylabel(key.replace('_',' ').title())
plt.legend()
plt.xlim([0,max(history.epoch)])
plot_history([('baseline', baseline_history),
('small', small_history),
('big', big_history)])
三个模型在迭代过程中在训练集的表现都会越来越好,并且都会出现过拟合的现象
大模型在训练集上表现更好,过拟合的速度更快
l2正则减少过拟合
l2_model = keras.Sequential(
[
layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),
activation='relu', input_shape=(NUM_WORDS,)),
layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),
activation='relu'),
layers.Dense(1, activation='sigmoid')
]
)
l2_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
l2_model.summary()
l2_history = l2_model.fit(train_data, train_labels,
epochs=20, batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
plot_history([('baseline', baseline_history),
('l2', l2_history)])
可以发现正则化之后的模型在验证集上的过拟合程度减少
添加dropout减少过拟合
dpt_model = keras.Sequential(
[
layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
layers.Dropout(0.5),
layers.Dense(16, activation='relu'),
layers.Dropout(0.5),
layers.Dense(1, activation='sigmoid')
]
)
dpt_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
dpt_model.summary()
dpt_history = dpt_model.fit(train_data, train_labels,
epochs=20, batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
plot_history([('baseline', baseline_history),
('dropout', dpt_history)])
批正则化
model = keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(784,)),
layers.BatchNormalization(),
layers.Dense(64, activation='relu'),
layers.BatchNormalization(),
layers.Dense(64, activation='relu'),
layers.BatchNormalization(),
layers.Dense(10, activation='softmax')
])
model.compile(optimizer=keras.optimizers.SGD(),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
model.summary()
history = model.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()
总结
防止神经网络中过度拟合的最常用方法:
获取更多训练数据。
减少网络容量。
添加权重正规化。
添加dropout。
来源:https://blog.csdn.net/Lzj000lzj/article/details/94132842
标签:keras,欠拟合,过拟合


猜你喜欢
php开启openssl的方法
2023-11-14 06:52:51
python网络爬虫之如何伪装逃过反爬虫程序的方法
2022-08-12 10:23:23
利用python爬取软考试题之ip自动代理
2023-01-30 01:17:28

Python urlopen()函数 示例分享
2022-08-15 01:00:58
微信小程序基于数据库时间实现商品倒计时功能(可重用代码)
2024-01-16 06:05:38

sql 存储过程批量删除数据的语句
2012-08-21 10:24:14
页面中横排布局的思考
2008-01-18 12:56:00

python3发送邮件需要经过代理服务器的示例代码
2023-07-27 01:00:44
pandas进行时间数据的转换和计算时间差并提取年月日
2021-03-14 02:22:22

python 数据提取及拆分的实现代码
2023-11-13 09:13:12

使用python切片实现二维数组复制示例
2021-11-02 22:24:41
Python实现通过文件路径获取文件hash值的方法
2023-10-27 21:41:20
JavaScript 判断浏览器类型及版本
2024-05-13 10:36:39
python实现一组典型数据格式转换
2023-07-14 22:19:04

用tensorflow构建线性回归模型的示例代码
2022-04-12 03:41:47
vue开发chrome插件,实现获取界面数据和保存到数据库功能
2024-01-19 03:18:57
Python数据类型详解(一)字符串
2023-08-12 22:55:56
pandas数据清洗实现删除的项目实践
2021-09-02 16:44:17
Python的getattr函数方法学习使用示例
2021-10-18 13:43:25
MySQL5.7中的JSON基本操作指南
2024-01-27 20:38:34