浅谈keras中的目标函数和优化函数MSE用法

作者:wanghua609 时间:2022-01-19 02:15:55 

mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()


model = Sequential()  
model.add(Dense(64, init='uniform', input_dim=10))  
model.add(Activation('tanh'))  
model.add(Activation('softmax'))  

sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)  
model.compile(loss='mean_squared_error', optimizer=sgd)

补充知识:(Keras)——keras 损失函数与评价指标详解

1、目标函数

(1)mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()

(2)mean_absolute_error / mae 绝对值均差,公式为(|y_pred-y_true|).mean()

(3) mean_absolute_percentage_error / mape公式为:(|(y_true - y_pred) / clip((|y_true|),epsilon, infinite)|).mean(axis=-1) * 100,和mae的区别就是,累加的是(预测值与实际值的差)除以(剔除不介于epsilon和infinite之间的实际值),然后求均值。

(4)mean_squared_logarithmic_error / msle公式为: (log(clip(y_pred, epsilon, infinite)+1)- log(clip(y_true, epsilon,infinite)+1.))^2.mean(axis=-1),这个就是加入了log对数,剔除不介于epsilon和infinite之间的预测值与实际值之后,然后取对数,作差,平方,累加求均值。

(5)squared_hinge 公式为:(max(1-y_truey_pred,0))^2.mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的平方的累加均值。

(6)hinge 公式为:(max(1-y_truey_pred,0)).mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的的累加均值。

(7)binary_crossentropy: 常说的逻辑回归, 就是常用的交叉熵函

(8)categorical_crossentropy: 多分类的逻辑

2、性能评估函数:

(1)binary_accuracy: 对二分类问题,计算在所有预测值上的平均正确率

(2)categorical_accuracy:对多分类问题,计算再所有预测值上的平均正确率

(3)sparse_categorical_accuracy:与categorical_accuracy相同,在对稀疏的目标值预测时有用

(4)top_k_categorical_accracy: 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确

(5)sparse_top_k_categorical_accuracy:与top_k_categorical_accracy作用相同,但适用于稀疏情况

来源:https://blog.csdn.net/weixin_38145317/article/details/79461270

标签:keras,目标,优化,MSE
0
投稿

猜你喜欢

  • 一文让你快速了解JavaScript栈

    2024-04-29 13:22:04
  • Django实现自定义路由转换器

    2021-09-10 05:49:04
  • Python Pandas 如何shuffle(打乱)数据

    2023-04-22 23:17:16
  • python飞机大战pygame游戏框架搭建操作详解

    2022-09-24 05:49:51
  • Python 编码规范(Google Python Style Guide)

    2023-04-12 03:49:35
  • 用ASP和XMLHTTP分析远程XML文件

    2007-12-12 12:48:00
  • 网址导航的组织方法

    2008-09-27 12:35:00
  • Node.js中环境变量process.env的一些事详解

    2024-05-13 09:28:41
  • 原生js编写autoComplete插件

    2024-05-09 10:37:43
  • python 快速排序代码

    2022-04-15 00:00:21
  • 解析Mac OS下部署Pyhton的Django框架项目的过程

    2021-04-03 14:00:34
  • opencv+tesseract实现验证码识别的示例

    2021-02-21 04:20:44
  • SqlServer 2005 T-SQL Query 学习笔记(4)

    2024-01-26 07:44:06
  • Python pass 语句使用示例

    2022-05-01 16:49:55
  • 二种sql分页查询语句分享

    2024-01-15 10:29:04
  • python中unittest框架应用详解

    2023-05-26 14:27:42
  • 获取Dom元素的X/Y坐标

    2009-10-10 12:49:00
  • pytorch加载预训练模型与自己模型不匹配的解决方案

    2023-06-17 14:22:24
  • Oracle也有注入漏洞

    2010-07-23 13:03:00
  • Mootools 1.2教程(5)——事件处理

    2008-11-19 16:33:00
  • asp之家 网络编程 m.aspxhome.com