Python统计词频并绘制图片(附完整代码)

作者:繁星蓝雨 时间:2022-01-01 09:28:24 

效果

Python统计词频并绘制图片(附完整代码)
Python统计词频并绘制图片(附完整代码)
Python统计词频并绘制图片(附完整代码)

1 实现代码

读取txt文件:


def readText(text_file_path):
   with open(text_file_path, encoding='gbk') as f: #
       content = f.read()
   return content

得到文章的词频:


def getRecommondArticleKeyword(text_content,  key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = 'searchEngine'):
   '''
   :param text_content: 文本字符串
   :param key_word_need_num: 需要的关键词数量
   :param custom_words: 自定义关键词
   :param stop_words: 不查询关键词
   :param query_pattern:
   precision:精确模式————试图将句子最精确地切开,适合文本分析;
   entire:全模式————把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
   searchEngine:搜索引擎模式————在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词;
   paddle模式————利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。
   :return:
   '''
   # jieba.enable_paddle()
   # paddle.fluid.install_check.run_check()
   if not isinstance(text_content, str):
       raise ValueError('文本字符串类型错误!')
   if not isinstance(key_word_need_num, int):
       raise ValueError('关键词个数类型错误!')
   if not isinstance(custom_words, list):
       raise ValueError('自定义关键词类型错误!')
   if not isinstance(stop_words, list):
       raise ValueError('屏蔽关键词类型错误!')
   if not isinstance(query_pattern, str):
       raise ValueError('查询模式类型错误!')

# 添加自定义关键词
   for word in custom_words:
       jieba.add_word(word)

if query_pattern == 'searchEngine':
       key_words = jieba.cut_for_search(text_content)
   elif query_pattern == 'entire':
       key_words = jieba.cut(text_content, cut_all=True, use_paddle=True)
   elif query_pattern == 'precision':
       key_words = jieba.cut(text_content, cut_all=False, use_paddle=True)
   else:
       return []

# print("拆分后的词: %s" % " ".join(key_words))

# 过滤后的关键词
   stop_words = set(stop_words)
   word_count = Counter()
   for word in key_words:
       if len(word) > 1 and word not in stop_words:
           word_count[word] += 1

# res_words = list()
   # for data in word_count.most_common(key_word_need_num):
   #     res_words.append(data[0])
   # return res_words

return word_count

绘制图片:


def drawWordsCloud(word_count, save_img_filePath='', img_mask_filePath=''):
   # print(word_count)
   # print(type(word_count))

if len(img_mask_filePath) != 0:
       img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组
       wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                background_color="white",  # 设置背景颜色
                                max_words=200,  # 设置最大显示的字数
                                max_font_size=50,  # 设置字体最大值
                                random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                width=400,
                                height=200,
                                mask=img_mask
                                )
   else:
       wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                background_color="white",  # 设置背景颜色
                                max_words=200,  # 设置最大显示的字数
                                max_font_size=50,  # 设置字体最大值
                                random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                width=400,
                                height=200
                                )
   # 绘图
   wc.generate_from_frequencies(word_count)   #从字典生成词云
   plt.imshow(wc)      #显示词云
   plt.axis('off')     #关闭坐标轴
   plt.show()          #显示图像

# 保存图片
   if len(save_img_filePath) != 0:
       wc.to_file(save_img_filePath)
   else:
       pass

2 完整代码


#-*- coding : utf-8-*-
import jieba
from collections import Counter
import paddle

import wordcloud    #词云展示库
import matplotlib.pyplot as plt     #图像展示库

import time

from PIL import Image
import numpy as np

def timer(func):
   def calculateTime(*args, **kwargs):
       t = time.perf_counter()
       result = func(*args, **kwargs)
       print(f'func {func.__name__} coast time:{time.perf_counter() - t:.8f} s')
       return result
   return calculateTime

def readText(text_file_path):
   with open(text_file_path, encoding='gbk') as f: #
       content = f.read()
   return content

@timer
def getRecommondArticleKeyword(text_content,  key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = 'searchEngine'):
   '''
   :param text_content: 文本字符串
   :param key_word_need_num: 需要的关键词数量
   :param custom_words: 自定义关键词
   :param stop_words: 不查询关键词
   :param query_pattern:
   precision:精确模式————试图将句子最精确地切开,适合文本分析;
   entire:全模式————把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
   searchEngine:搜索引擎模式————在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词;
   paddle模式————利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。
   :return:
   '''
   # jieba.enable_paddle()
   # paddle.fluid.install_check.run_check()
   if not isinstance(text_content, str):
       raise ValueError('文本字符串类型错误!')
   if not isinstance(key_word_need_num, int):
       raise ValueError('关键词个数类型错误!')
   if not isinstance(custom_words, list):
       raise ValueError('自定义关键词类型错误!')
   if not isinstance(stop_words, list):
       raise ValueError('屏蔽关键词类型错误!')
   if not isinstance(query_pattern, str):
       raise ValueError('查询模式类型错误!')

# 添加自定义关键词
   for word in custom_words:
       jieba.add_word(word)

if query_pattern == 'searchEngine':
       key_words = jieba.cut_for_search(text_content)
   elif query_pattern == 'entire':
       key_words = jieba.cut(text_content, cut_all=True, use_paddle=True)
   elif query_pattern == 'precision':
       key_words = jieba.cut(text_content, cut_all=False, use_paddle=True)
   else:
       return []

# print("拆分后的词: %s" % " ".join(key_words))

# 过滤后的关键词
   stop_words = set(stop_words)
   word_count = Counter()
   for word in key_words:
       if len(word) > 1 and word not in stop_words:
           word_count[word] += 1

# res_words = list()
   # for data in word_count.most_common(key_word_need_num):
   #     res_words.append(data[0])
   # return res_words

return word_count

def drawWordsCloud(word_count, save_img_filePath='', img_mask_filePath=''):
   # print(word_count)
   # print(type(word_count))

if len(img_mask_filePath) != 0:
       img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组
       wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                background_color="white",  # 设置背景颜色
                                max_words=200,  # 设置最大显示的字数
                                max_font_size=50,  # 设置字体最大值
                                random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                width=400,
                                height=200,
                                mask=img_mask
                                )
   else:
       wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                background_color="white",  # 设置背景颜色
                                max_words=200,  # 设置最大显示的字数
                                max_font_size=50,  # 设置字体最大值
                                random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                width=400,
                                height=200
                                )
   # 绘图
   wc.generate_from_frequencies(word_count)   #从字典生成词云
   plt.imshow(wc)      #显示词云
   plt.axis('off')     #关闭坐标轴
   plt.show()          #显示图像

# 保存图片
   if len(save_img_filePath) != 0:
       wc.to_file(save_img_filePath)
   else:
       pass

if __name__ == '__main__':
   pass
   # /Users/mac/Downloads/work/retailSoftware/公司项目/test.txt
   text_file_path = "/Users/mac/Downloads/电子书/编程思想/相约星期二/相约星期二.txt"
   # text_file_path = "/Users/mac/Downloads/work/retailSoftware/公司项目/test3.txt"
   text_content = readText(text_file_path)
   # print(text_content)
   # print(JNI_API_getRecommondArticleKeyword(text_content))
   img_mask_filePath = '/Users/mac/Desktop/截屏2021-08-20 下午4.02.10.png'
   img_save_filePath = '/Users/mac/Downloads/test9.png'
   drawWordsCloud(getRecommondArticleKeyword(text_content), img_save_filePath, img_mask_filePath)

来源:https://blog.csdn.net/qq_33375598/article/details/119856008

标签:Python,统计,词频,绘图
0
投稿

猜你喜欢

  • 浅析php与数据库代码开发规范

    2024-05-02 17:33:59
  • tensorflow训练中出现nan问题的解决

    2023-02-10 09:34:09
  • python select.select模块通信全过程解析

    2022-05-23 13:13:10
  • SQL Server中读取XML文件的简单做法

    2008-12-23 15:29:00
  • python时间日期操作方法实例小结

    2021-03-13 11:01:45
  • MySQL安装后不能用是什么情况该如何解决

    2024-01-25 10:53:38
  • 微信小程序学习笔记之表单提交与PHP后台数据交互处理图文详解

    2023-11-22 19:29:44
  • 教你如何使用MySQL8递归的方法

    2024-01-28 22:59:12
  • tensorflow中Dense函数的具体使用

    2021-04-26 17:01:49
  • Python中使用PyQt把网页转换成PDF操作代码实例

    2021-12-04 11:31:19
  • 浅谈JS中var,let和const的区别

    2024-05-09 15:07:16
  • 2008北京奥运会倒计时js代码

    2008-01-22 18:18:00
  • Python while true实现爬虫定时任务

    2021-02-10 13:35:30
  • python opencv根据颜色进行目标检测的方法示例

    2021-09-29 03:53:41
  • 浅谈一下关于Python对XML的解析

    2023-08-15 21:33:36
  • 动网论坛验证码改进 加法验证码(ASPJpeg版)

    2011-04-10 10:44:00
  • Scrapy 之中间件(Middleware)的具体使用

    2023-01-10 19:50:22
  • python PyQt5/Pyside2 按钮右击菜单实例代码

    2023-03-11 15:03:19
  • 成功解决ValueError: Supported target types are:('binary', 'multiclass'). Got 'continuous' instead.

    2023-01-24 03:59:00
  • 页面自动刷新javascript代码大全

    2010-06-28 18:54:00
  • asp之家 网络编程 m.aspxhome.com