Python编程实现二分法和牛顿迭代法求平方根代码

作者:ycf74514 时间:2022-01-03 12:24:46 

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢?
实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration)

1:二分法

求根号5

a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.25>5,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.5625<5,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.515625<5,得到当前下限1.875

每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼 * 方根:


import math
from math import sqrt

def sqrt_binary(num):
 x=sqrt(num)
 y=num/2.0
 low=0.0
 up=num*1.0
 count=1
 while abs(y-x)>0.00000001:
   print count,y
   count+=1    
   if (y*y>num):
     up=y
     y=low+(y-low)/2
   else:
     low=y
     y=up-(up-y)/2
 return y

print(sqrt_binary(5))
print(sqrt(5))

运行结果:
1 2.5
2 1.25
3 1.875
4 2.1875
5 2.34375
6 2.265625
7 2.2265625
8 2.24609375
9 2.236328125
10 2.2314453125
11 2.23388671875
12 2.23510742188
13 2.23571777344
14 2.23602294922
15 2.23617553711
16 2.23609924316
17 2.23606109619
18 2.23608016968
19 2.23607063293
20 2.23606586456
21 2.23606824875
22 2.23606705666
23 2.2360676527
24 2.23606795073
25 2.23606809974
26 2.23606802523
27 2.23606798798
2.23606796935
2.2360679775
[Finished in 0.1s]

经过27次二分法迭代,得到的值和系统sqrt()差别在0.00000001,精度在亿分之一,

0.001需要迭代8次

因此,在对精度要求不高的情况下,二分法也算比较高效的算法。

2:牛顿迭代

仔细思考一下就能发现,我们需要解决的问题可以简单化理解。

从函数意义上理解:我们是要求函数f(x)=x&sup2;,使f(x)=num的近似解,即x&sup2;-num=0的近似解。

从几何意义上理解:我们是要求抛物线g(x)=x&sup2;-num与x轴交点(g(x)=0)最接近的点。

我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:

Python编程实现二分法和牛顿迭代法求平方根代码

可以由此得到

Python编程实现二分法和牛顿迭代法求平方根代码

从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。

Python编程实现二分法和牛顿迭代法求平方根代码

对于一般情况:

Python编程实现二分法和牛顿迭代法求平方根代码

将m=2代入:

Python编程实现二分法和牛顿迭代法求平方根代码


def sqrt_newton(num):
 x=sqrt(num)
 y=num/2.0
 count=1
 while abs(y-x)>0.00000001:
   print count,y
   count+=1
   y=((y*1.0)+(1.0*num)/y)/2.0000
 return y

print(sqrt_newton(5))
print(sqrt(5))

运行结果:
1 2.5
2 2.25
3 2.23611111111
2.23606797792
2.2360679775

精确到亿分之一,牛顿法只迭代了3次,是二分法的十倍

3:利用牛顿法求开立方


def cube_newton(num):
 x=num/3.0
 y=0
 count=1
 while abs(x-y)>0.00000001:
   print count,x
   count+=1
   y=x
   x=(2.0/3.0)*x+(num*1.0)/(x*x*3.0)
 return x

print(cube_newton(27))

微积分、概率、线代是高级算法的基础课。可是,这么多年,已经忘得差不多了..............................

来源:http://blog.csdn.net/ycf74514/article/details/48996383

标签:python,二分法,牛顿迭代法
0
投稿

猜你喜欢

  • python 如何调用 dubbo 接口

    2022-09-28 13:20:13
  • 合并网页中的多个script引用实现思路及代码

    2023-06-29 09:02:19
  • 基于Python闭包及其作用域详解

    2023-11-07 07:22:02
  • Perl下应当如何连接Access数据库

    2008-12-04 13:06:00
  • Python自定义sorted排序实现方法详解

    2022-08-03 05:40:02
  • python实现K最近邻算法

    2021-06-18 04:05:46
  • 关于numpy中eye和identity的区别详解

    2021-11-18 14:33:08
  • python查询mysql中文乱码问题

    2021-09-28 07:05:42
  • SpringBoot集成内存数据库Derby的实践

    2024-01-13 06:02:42
  • python编写接口测试文档(以豆瓣搜索为例)

    2023-09-21 17:39:49
  • linux下python中文乱码解决方案详解

    2023-09-01 03:53:04
  • 全局安装 Vue cli3 和 继续使用 Vue-cli2.x操作

    2024-05-28 15:59:34
  • python3中set(集合)的语法总结分享

    2022-06-06 21:44:56
  • 让数据站住脚-浅谈用户研究中的信度与效度

    2010-09-10 13:14:00
  • Python3.x对JSON的一些操作示例

    2022-08-09 00:23:54
  • Python3.9新特性详解

    2023-03-26 21:56:16
  • python unicodedata模块用法

    2021-04-05 20:53:55
  • Python脚本实现一键自动整理办公文件

    2022-01-02 16:36:03
  • SQL实现查询某字段的值为空的记录

    2024-01-18 13:44:56
  • MySQL数据库事务与锁深入分析

    2024-01-28 19:03:12
  • asp之家 网络编程 m.aspxhome.com