DataFrame 数据合并实现(merge,join,concat)
作者:Python之简 时间:2022-03-28 04:24:02
merge
merge 函数通过一个或多个键将数据集的行连接起来。
场景:针对同一个主键存在的两张包含不同特征的表,通过主键的链接,将两张表进行合并。合并之后,两张表的行数不增加,列数是两张表的列数之和。
def merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None):
参数 | 描述 |
---|---|
how | 数据融合的方法,从在不重合的键,方式(inner、outer、left、right) |
on | 用来对齐的列名,一定要保证左表和右表存在相同的列名。 |
left_on | 左表对齐的列,可以是列名。也可以是DataFrame同长度的arrays |
right_on | 右表对齐的列,可以是列名。 |
left_index | 将左表的index用作连接键 |
right_index | 将右表的index用作连接键 |
suffixes | 左右对象中存在重名列,结果区分的方式,后缀名。 |
copy | 默认:True。将数据复制到数据结构中,设置为False提高性能。 |
特性示例(1)
默认:以重叠的列名当作连接键
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
print(df1)
print(df2)
print(df3)
key data1
0 one 0
1 two 1
2 two 2
key data2
0 one 0
1 three 1
2 three 2
key data1 data2
0 one 0 0
特性示例(2)
默认:做inner连接,取key的交集
连接方式还有left right outer
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
df4 = pd.merge(df1, df2, how='left')
print(df3)
print(df4)
key data1 data2
0 one 0 0
key data1 data2
0 one 0 0.0
1 two 1 NaN
2 two 2 NaN
特性示例(3)
多键连接时将连接键做成列表传入。
on默认是两者同时存在的列
df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
'value': ['a', 'b', 'c'],
'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'two', 'three'],
'value': ['a', 'c', 'c'],
'data2': np.arange(3)})
df5 = pd.merge(df1, df2)
df6 = pd.merge(df1, df2, on=['key', 'value'], how='outer')
print(df5)
print(df6)
key value data1 data2
0 one a 0 0
1 two c 2 1
key value data1 data2
0 one a 0.0 0.0
1 two b 1.0 NaN
2 two c 2.0 1.0
3 three c NaN 2.0
特性示例(4)
两个对象的列名不同,需要分别制定。
df7 = pd.merge(df1, df2, left_on=['key1','data1'], right_on=['key2','data2'], how='outer')
print(df7)
key1 value_x data1 key2 value_y data2
0 one a 0.0 one a 0.0
1 two b 1.0 two c 1.0
2 two c 2.0 NaN NaN NaN
3 NaN NaN NaN three c 2.0
join
join方法将两个DataFrame中不同的列索引合并成为一个DataFrame
参数的意义与merge基本相同,只是join方法默认左外连接how=left
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
sort=False):
示例
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
df2 = pd.DataFrame({'C': ['C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2']},
index=['K0', 'K1', 'K3'])
df3 = df1.join(df2)
df4 = df1.join(df2, how='outer')
df5 = df1.join(df2, how='inner')
print(df3)
print(df4)
print(df5)
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
K2 A1 B2 NaN NaN
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
K2 A1 B2 NaN NaN
K3 NaN NaN C3 D2
A B C D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1
concat
制定按某个轴进行连接(可横向可纵向),也可以指定连接方法。
def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
sort=None, copy=True):
属性 | 描述 |
---|---|
objs | 合并的对象集合。可以是Series、DataFrame |
axis | 合并方法。默认0,表示纵向,1横向 |
join | 默认outer并集,inner交集。只有这两种 |
join_axes | 按哪些对象的索引保存 |
ignore_index | 默认Fasle忽略。是否忽略原index |
keys | 为原始DataFrame添加一个键,默认无 |
示例(1)
s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
s3 = pd.concat([s1, s2])
s4 = pd.concat([s1, s2], ignore_index=True)
print(s3)
print(s4)
0 a
1 b
dtype: object
0 c
1 d
dtype: object
0 a
1 b
0 c
1 d
dtype: object
0 a
1 b
2 c
3 d
dtype: object
示例(2)
df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], join='inner')
print(df3)
0
0 1
1 2
0 1
1 2
示例(3)
df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
print(df3)
A 0 B 0
0 a 1 a 1
1 b 2 b 2
append
横向和纵向同时扩充,不考虑columns和index
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
s2 = pd.Series(['X0','X1'], index=['A','B'])
result = df1.append(s2, ignore_index=True)
print(result)
A B
K0 A0 B0
K1 A1 B1
K2 A1 B2
A B
0 A0 B0
1 A1 B1
2 A1 B2
3 X0 X1
汇总
concat:可以沿一条轴将多个对象连接到一起
merge:可以根据一个或多个键将不同的DataFrame中的行连接起来。
join:inner是交集,outer是并集。
来源:https://blog.csdn.net/qq_1290259791/article/details/83247048
标签:DataFrame,数据合并


猜你喜欢
Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)
2023-03-28 04:05:22
微信小程序实现计算器(含历史记录)
2024-04-17 10:30:20

推荐几款 Redis 可视化工具(太厉害了)
2024-01-26 11:15:59

如何在Python 游戏中模拟引力
2021-11-28 21:51:27
python MultipartEncoder传输zip文件实例
2022-04-20 07:22:57
Bottle框架中的装饰器类和描述符应用详解
2023-10-10 00:18:25
python中有帮助函数吗
2021-06-15 15:50:02
使用pd.merge表连接出现多余行的问题解决
2023-08-25 11:34:24

WIN2003无法上传较大的文件Request对象错误解决方法
2007-08-10 09:44:00

Silverlight VS Flash,谁更强?
2008-11-07 11:04:00
Python如何读取相对路径文件
2023-12-06 17:03:18

python pyhs2 的安装操作
2021-03-11 18:21:33
matplotlib教程——强大的python作图工具库
2021-05-18 23:42:55

给大家整理了19个pythonic的编程习惯(小结)
2024-01-02 08:00:05
Python基于Opencv识别两张相似图片
2021-01-13 20:16:42

python使用pandas抽样训练数据中某个类别实例
2021-03-02 02:56:14
python map比for循环快在哪
2021-06-16 09:39:04

详解python使用递归、尾递归、循环三种方式实现斐波那契数列
2022-06-22 13:44:49

基于SQL Server OS的任务调度机制详解
2024-01-14 22:17:59

python实现逻辑回归的方法示例
2021-07-27 17:04:24
