详解Python prometheus_client使用方式

作者:JoJo93 时间:2022-01-17 11:09:37 

背景说明

服务部署在阿里云的K8s上,配置了基于Prometheus的Grafana监控。原本用的是自定义的Metrics接口统计,上报一些字段,后面发现Prometheus自带的监控非常全面好用,适合直接抓取统计,所以做了一些改变。

Python prometheus-client 安装

pip install prometheus-client

Python封装

# encoding: utf-8
from prometheus_client import Counter, Gauge, Summary
from prometheus_client.core import CollectorRegistry
from prometheus_client.exposition import choose_encoder

class Monitor:
   def __init__(self):
   # 注册收集器&最大耗时map
   self.collector_registry = CollectorRegistry(auto_describe=False)
   self.request_time_max_map = {}

# 接口调用summary统计
   self.http_request_summary = Summary(name="http_server_requests_seconds",
                                  documentation="Num of request time summary",
                                  labelnames=("method", "code", "uri"),
                                  registry=self.collector_registry)
   # 接口最大耗时统计
   self.http_request_max_cost = Gauge(name="http_server_requests_seconds_max",
                                 documentation="Number of request max cost",
                                 labelnames=("method", "code", "uri"),
                                 registry=self.collector_registry)

# 请求失败次数统计
   self.http_request_fail_count = Counter(name="http_server_requests_error",
                                     documentation="Times of request fail in total",
                                     labelnames=("method", "code", "uri"),
                                     registry=self.collector_registry)

# 模型预测耗时统计
   self.http_request_predict_cost = Counter(name="http_server_requests_seconds_predict",
                                       documentation="Seconds of prediction cost in total",
                                       labelnames=("method", "code", "uri"),
                                       registry=self.collector_registry)
   # 图片下载耗时统计
   self.http_request_download_cost = Counter(name="http_server_requests_seconds_download",
                                        documentation="Seconds of download cost in total",
                                        labelnames=("method", "code", "uri"),
                                        registry=self.collector_registry)

# 获取/metrics结果
   def get_prometheus_metrics_info(self, handler):
       encoder, content_type = choose_encoder(handler.request.headers.get('accept'))
       handler.set_header("Content-Type", content_type)
       handler.write(encoder(self.collector_registry))
       self.reset_request_time_max_map()

# summary统计
   def set_prometheus_request_summary(self, handler):
       self.http_request_summary.labels(handler.request.method, handler.get_status(), handler.request.path).observe(handler.request.request_time())
       self.set_prometheus_request_max_cost(handler)

# 自定义summary统计
   def set_prometheus_request_summary_customize(self, method, status, path, cost_time):
       self.http_request_summary.labels(method, status, path).observe(cost_time)
       self.set_prometheus_request_max_cost_customize(method, status, path, cost_time)

# 失败统计
   def set_prometheus_request_fail_count(self, handler, amount=1.0):
       self.http_request_fail_count.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

# 自定义失败统计
   def set_prometheus_request_fail_count_customize(self, method, status, path, amount=1.0):
       self.http_request_fail_count.labels(method, status, path).inc(amount)

# 最大耗时统计
   def set_prometheus_request_max_cost(self, handler):
       requset_cost = handler.request.request_time()
       if self.check_request_time_max_map(handler.request.path, requset_cost):
           self.http_request_max_cost.labels(handler.request.method, handler.get_status(), handler.request.path).set(requset_cost)
           self.request_time_max_map[handler.request.path] = requset_cost

# 自定义最大耗时统计
   def set_prometheus_request_max_cost_customize(self, method, status, path, cost_time):
       if self.check_request_time_max_map(path, cost_time):
           self.http_request_max_cost.labels(method, status, path).set(cost_time)
           self.request_time_max_map[path] = cost_time

# 预测耗时统计
   def set_prometheus_request_predict_cost(self, handler, amount=1.0):
       self.http_request_predict_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

# 自定义预测耗时统计
   def set_prometheus_request_predict_cost_customize(self, method, status, path, cost_time):
       self.http_request_predict_cost.labels(method, status, path).inc(cost_time)

# 下载耗时统计
   def set_prometheus_request_download_cost(self, handler, amount=1.0):
       self.http_request_download_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount)

# 自定义下载耗时统计
   def set_prometheus_request_download_cost_customize(self, method, status, path, cost_time):
       self.http_request_download_cost.labels(method, status, path).inc(cost_time)

# 校验是否赋值最大耗时map
   def check_request_time_max_map(self, uri, cost):
       if uri not in self.request_time_max_map:
           return True
       if self.request_time_max_map[uri] < cost:
           return True
       return False

# 重置最大耗时map
   def reset_request_time_max_map(self):
       for key in self.request_time_max_map:
           self.request_time_max_map[key] = 0.0

调用

import tornado
import tornado.ioloop
import tornado.web
import tornado.gen
from datetime import datetime
from tools.monitor import Monitor

global g_monitor

class ClassifierHandler(tornado.web.RequestHandler):
   def post(self):
       # TODO Something you need
       # work....
       # 统计Summary,包括请求次数和每次耗时
       g_monitor.set_prometheus_request_summary(self)
       self.write("OK")

class PingHandler(tornado.web.RequestHandler):
   def head(self):
       print('INFO', datetime.now(), "/ping Head.")
       g_monitor.set_prometheus_request_summary(self)
       self.write("OK")

def get(self):
       print('INFO', datetime.now(), "/ping Get.")
       g_monitor.set_prometheus_request_summary(self)
       self.write("OK")

class MetricsHandler(tornado.web.RequestHandler):
   def get(self):
       print('INFO', datetime.now(), "/metrics Get.")
g_monitor.set_prometheus_request_summary(self)
# 通过Metrics接口返回统计结果
   g_monitor.get_prometheus_metrics_info(self)

def make_app():
   return tornado.web.Application([
       (r"/ping?", PingHandler),
       (r"/metrics?", MetricsHandler),
       (r"/work?", ClassifierHandler)
   ])

if __name__ == "__main__":
   g_monitor = Monitor()

app = make_app()
   app.listen(port)
   tornado.ioloop.IOLoop.current().start()

Metrics返回结果实例

详解Python prometheus_client使用方式

来源:https://blog.csdn.net/mywmy/article/details/103109561

标签:Python,prometheus,client
0
投稿

猜你喜欢

  • MySQL高级操作指令汇总

    2024-01-21 04:42:01
  • 新手如何发布Python项目开源包过程详解

    2023-02-27 13:08:05
  • Django中提供的6种缓存方式详解

    2023-03-24 14:55:49
  • 使用sqlserver存储过程sp_send_dbmail发送邮件配置方法(图文)

    2024-01-21 23:55:50
  • vue-router懒加载速度缓慢问题及解决方法

    2024-04-27 16:07:23
  • python 3.6 +pyMysql 操作mysql数据库(实例讲解)

    2024-01-19 16:38:39
  • python自动化测试中装饰器@ddt与@data源码深入解析

    2021-10-08 16:07:14
  • PHP操作数组的一些函数整理介绍

    2023-11-24 14:24:17
  • 如何利用python将Xmind用例转为Excel用例

    2022-06-18 19:18:46
  • Python真题案例之二分法查找详解

    2023-09-23 01:39:07
  • python ddt实现数据驱动

    2021-11-11 02:37:08
  • Django中Migrate和Makemigrations实操详解

    2021-09-12 02:34:23
  • 获取Dom元素的X/Y坐标

    2009-10-10 12:49:00
  • 浅谈Django中的QueryDict元素为数组的坑

    2023-08-22 18:55:54
  • Python Selenium 之数据驱动测试的实现

    2021-12-16 22:45:27
  • python处理xml文件操作详解

    2021-11-10 10:31:24
  • 如何利用Python批量处理行、列和单元格详解

    2023-02-05 05:07:35
  • INSERT INTO SELECT语句与SELECT INTO FROM语句的一些区别

    2024-01-19 11:21:13
  • pytorch transform数据处理转c++问题

    2023-08-19 11:24:49
  • Vue实现自带的过滤器实例

    2024-05-09 10:41:10
  • asp之家 网络编程 m.aspxhome.com