Tensorflow实现在训练好的模型上进行测试

作者:非典型废言 时间:2022-10-04 07:17:00 

Tensorflow可以使用训练好的模型对新的数据进行测试,有两种方法:第一种方法是调用模型和训练在同一个py文件中,中情况比较简单;第二种是训练过程和调用模型过程分别在两个py文件中。本文将讲解第二种方法。

模型的保存

tensorflow提供可保存训练模型的接口,使用起来也不是很难,直接上代码讲解:


#网络结构
w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))
b1 = tf.Variable(tf.zeros([h1_units]))
y = tf.nn.softmax(tf.matmul(w1, x) + b1)
tf.add_to_collection('network-output', y)

x = tf.placeholder(tf.float32, [None, in_units], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
#损失函数与优化函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(rate).minimize(cross_entropy)

saver = tf.train.Saver()
with tf.Session() as sess:
   sess.run(init)
   saver.save(sess,"save/model.ckpt")
   train_step.run({x: train_x, y_: train_y})

以上代码就完成了模型的保存,值得注意的是下面这行代码


tf.add_to_collection('network-output', y)

这行代码保存了神经网络的输出,这个在后面使用导入模型过程中起到关键作用。

模型的导入

模型训练并保存后就可以导入来评估模型在测试集上的表现,网上很多文章只用简单的四则运算来做例子,让人看的头大。还是先上代码:


with tf.Session() as sess:
 saver = tf.train.import_meta_graph('./model.ckpt.meta')
 saver.restore(sess, './model.ckpt')# .data文件
 pred = tf.get_collection('network-output')[0]

graph = tf.get_default_graph()
 x = graph.get_operation_by_name('x').outputs[0]
 y_ = graph.get_operation_by_name('y_').outputs[0]

y = sess.run(pred, feed_dict={x: test_x, y_: test_y})

讲解一下关键的代码,首先是pred = tf.get_collection('pred_network')[0],这行代码获得训练过程中网络输出的“接口”,简单理解就是,通过tf.get_collection() 这个方法获取了整个网络结构。获得网络结构后我们就需要喂它对应的数据y = sess.run(pred, feed_dict={x: test_x, y_: test_y}) 在训练过程中我们的输入是


x = tf.placeholder(tf.float32, [None, in_units], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')

因此导入模型后所需的输入也要与之对应可使用以下代码获得:


 x = graph.get_operation_by_name('x').outputs[0]
 y_ = graph.get_operation_by_name('y_').outputs[0]

使用模型的最后一步就是输入测试集,然后按照训练好的网络进行评估


 sess.run(pred, feed_dict={x: test_x, y_: test_y})

理解下这行代码,sess.run() 的函数原型为


run(fetches, feed_dict=None, options=None, run_metadata=None)

Tensorflow对 feed_dict 执行fetches操作,因此在导入模型后的运算就是,按照训练的网络计算测试输入的数据。

来源:https://blog.csdn.net/sinat_35821976/article/details/80765145

标签:Tensorflow,训练,模型,测试
0
投稿

猜你喜欢

  • 用Python中的字典来处理索引统计的方法

    2022-05-28 19:43:45
  • 简单理解Python中的装饰器

    2021-06-18 01:44:21
  • SQL语句练习实例之二——找出销售冠军

    2011-10-24 19:52:45
  • 详解python里的命名规范

    2023-02-11 20:07:02
  • Web页脚设计的版权格式规范

    2009-07-22 20:52:00
  • python把一个字符串切开的实例方法

    2022-07-10 21:52:17
  • python代码有一行标黄问题的解决方案

    2021-07-16 22:29:57
  • 微信支付、支付宝支付等常用第三方支付通道接口手续费对比

    2022-01-29 12:48:14
  • python实现PyEMD经验模态分解残差量分析

    2022-06-22 05:26:17
  • python 对txt中每行内容进行批量替换的方法

    2022-12-29 21:37:45
  • pyspark给dataframe增加新的一列的实现示例

    2022-06-13 20:00:19
  • PHP中文字符串截断无乱码解决方法

    2024-05-11 09:44:55
  • 基于CentOS搭建Python Django环境过程解析

    2021-09-10 07:14:58
  • python中的反斜杠问题深入讲解

    2023-04-20 14:08:36
  • Linux/UNIX和Window平台上安装Mysql

    2024-01-24 00:00:15
  • python ImageDraw类实现几何图形的绘制与文字的绘制

    2023-10-14 10:58:13
  • python实现不同电脑之间视频传输功能

    2021-01-07 00:03:40
  • python之pyinstaller组件打包命令和异常解析实战

    2023-08-05 05:34:23
  • MySql在Mac上的安装与配置详解

    2024-01-27 03:09:52
  • 详解mysql中if函数的正确使用姿势

    2024-01-23 00:37:57
  • asp之家 网络编程 m.aspxhome.com