PyTorch训练LSTM时loss.backward()报错的解决方案

作者:Ricky_Yan 时间:2022-01-10 00:04:09 

训练用PyTorch编写的LSTM或RNN时,在loss.backward()上报错:

RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.

千万别改成loss.backward(retain_graph=True),会导致显卡内存随着训练一直增加直到OOM:

RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.73 GiB total capacity; 9.79 GiB already allocated; 13.62 MiB free; 162.76 MiB cached)

正确做法:


LSRM / RNN模块初始化时定义好hidden,每次forward都要加上self.hidden = self.init_hidden():
Class LSTMClassifier(nn.Module):
   def __init__(self, embedding_dim, hidden_dim):
   # 此次省略其它代码
   self.rnn_cell = nn.LSTM(embedding_dim, hidden_dim)
   self.hidden = self.init_hidden()
   # 此次省略其它代码

def init_hidden(self):
       # 开始时刻, 没有隐状态
       # 关于维度设置的详情,请参考 Pytorch 文档
       # 各个维度的含义是 (Seguence, minibatch_size, hidden_dim)
       return (torch.zeros(1, 1, self.hidden_dim),
               torch.zeros(1, 1, self.hidden_dim))
   def forward(self, x):
       # 此次省略其它代码
       self.hidden = self.init_hidden()  # 就是加上这句!!!!
       out, self.hidden = self.rnn_cell(x, self.hidden)    
       # 此次省略其它代码
       return out

或者其它模块每次调用这个模块时,其它模块的forward()都对这个LSTM模块init_hidden()一下。

如定义一个模型LSTM_Model():


Class LSTM_Model(nn.Module):
   def __init__(self, embedding_dim, hidden_dim):
       # 此次省略其它代码
       self.rnn = LSTMClassifier(embedding_dim, hidden_dim)
       # 此次省略其它代码

def forward(self, x):
       # 此次省略其它代码
       self.rnn.hidden = self.rnn.init_hidden()  # 就是加上这句!!!!
       out = self.rnn(x)    
       # 此次省略其它代码
       return out

这是因为:

根据 官方tutorial,在 loss 反向传播的时候,pytorch 试图把 hidden state 也反向传播,但是在新的一轮 batch 的时候 hidden state 已经被内存释放了,所以需要每个 batch 重新 init (clean out hidden state), 或者 detach,从而切断反向传播。

补充:pytorch:在执行loss.backward()时out of memory报错

在自己编写SurfNet网络的过程中,出现了这个问题,查阅资料后,将得到的解决方法汇总如下

可试用的方法:

1、reduce batch size, all the way down to 1

2、remove everything to CPU leaving only the network on the GPU

3、remove validation code, and only executing the training code

4、reduce the size of the network (I reduced it significantly: details below)

5、I tried scaling the magnitude of the loss that is backpropagating as well to a much smaller value

在训练时,在每一个step后面加上:


torch.cuda.empty_cache()

在每一个验证时的step之后加上代码:


with torch.no_grad()

不要在循环训练中累积历史记录


total_loss = 0
for i in range(10000):
   optimizer.zero_grad()
   output = model(input)
   loss = criterion(output)
   loss.backward()
   optimizer.step()
   total_loss += loss

total_loss在循环中进行了累计,因为loss是一个具有autograd历史的可微变量。你可以通过编写total_loss += float(loss)来解决这个问题。

本人遇到这个问题的原因是,自己构建的模型输入到全连接层中的特征图拉伸为1维向量时太大导致的,加入pool层或者其他方法将最后的卷积层输出的特征图尺寸减小即可。

来源:https://blog.csdn.net/qq_31375855/article/details/107568057

标签:PyTorch,LSTM,loss.backward
0
投稿

猜你喜欢

  • Python报错SyntaxError:unexpected EOF while parsing的解决办法

    2023-10-01 10:29:54
  • pytorch--之halfTensor的使用详解

    2021-08-18 14:44:08
  • Python自定义元类的实例讲解

    2021-12-31 13:13:36
  • mysql jdbc连接步骤及常见参数

    2024-01-12 15:49:45
  • vscode 配置eslint和prettier正确方法

    2022-12-31 04:54:44
  • CentOS7下python3.7.0安装教程

    2023-09-26 21:42:56
  • 一文详解PyQt5中信号(Signal)与槽(Slot)

    2022-06-27 19:53:08
  • 网页设计之文字的辨识度与可读性

    2007-10-26 16:19:00
  • go语言发送smtp邮件的实现示例

    2023-06-20 06:59:14
  • MySQL自定义序列数的实现方式

    2024-01-14 00:09:50
  • 截字符串 去除HTML标记

    2023-07-29 17:01:08
  • 基于python 凸包问题的解决

    2021-04-11 02:56:41
  • Python中关于浮点数的冷知识

    2023-11-13 14:01:57
  • python网络应用开发知识点浅析

    2021-07-15 00:09:48
  • python爬虫入门教程--利用requests构建知乎API(三)

    2022-12-17 14:42:45
  • 使用pyinstaller打包PySide2程序中遇到的问题

    2023-02-10 18:23:32
  • 详解Python遍历列表时删除元素的正确做法

    2023-04-06 18:42:53
  • Python pandas之求和运算和非空值个数统计

    2023-11-19 03:04:59
  • java代码实现mysql分表操作(用户行为记录)

    2024-01-17 22:57:09
  • 微信小程序实现简单倒计时功能

    2024-04-17 10:23:27
  • asp之家 网络编程 m.aspxhome.com