Python实现Canny及Hough算法代码实例解析

作者:Moon小木 时间:2022-10-15 14:23:37 

任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。

效果

Python实现Canny及Hough算法代码实例解析

代码实现

Canny边缘检测:


# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np

class Canny:

def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):
   '''
   :param Guassian_kernal_size: 高斯滤波器尺寸
   :param img: 输入的图片,在算法过程中改变
   :param HT_high_threshold: 滞后阈值法中的高阈值
   :param HT_low_threshold: 滞后阈值法中的低阈值
   '''
   self.Guassian_kernal_size = Guassian_kernal_size
   self.img = img
   self.y, self.x = img.shape[0:2]
   self.angle = np.zeros([self.y, self.x])
   self.img_origin = None
   self.x_kernal = np.array([[-1, 1]])
   self.y_kernal = np.array([[-1], [1]])
   self.HT_high_threshold = HT_high_threshold
   self.HT_low_threshold = HT_low_threshold

def Get_gradient_img(self):
   '''
   计算梯度图和梯度方向矩阵。
   :return: 生成的梯度图
   '''
   print ('Get_gradient_img')

new_img_x = np.zeros([self.y, self.x], dtype=np.float)
   new_img_y = np.zeros([self.y, self.x], dtype=np.float)
   for i in range(0, self.x):
     for j in range(0, self.y):
       if j == 0:
         new_img_y[j][i] = 1
       else:
         new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)
       if i == 0:
         new_img_x[j][i] = 1
       else:
         new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)

gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位
   self.angle = np.tan(self.angle)
   self.img = gradient_img.astype(np.uint8)
   return self.img

def Non_maximum_suppression (self):
   '''
   对生成的梯度图进行非极大化抑制,将tan值的大小与正负结合,确定离散中梯度的方向。
   :return: 生成的非极大化抑制结果图
   '''
   print ('Non_maximum_suppression')

result = np.zeros([self.y, self.x])
   for i in range(1, self.y - 1):
     for j in range(1, self.x - 1):
       if abs(self.img[i][j]) <= 4:
         result[i][j] = 0
         continue
       elif abs(self.angle[i][j]) > 1:
         gradient2 = self.img[i - 1][j]
         gradient4 = self.img[i + 1][j]
         # g1 g2
         #  C
         #  g4 g3
         if self.angle[i][j] > 0:
           gradient1 = self.img[i - 1][j - 1]
           gradient3 = self.img[i + 1][j + 1]
         #  g2 g1
         #  C
         # g3 g4
         else:
           gradient1 = self.img[i - 1][j + 1]
           gradient3 = self.img[i + 1][j - 1]
       else:
         gradient2 = self.img[i][j - 1]
         gradient4 = self.img[i][j + 1]
         # g1
         # g2 C g4
         #   g3
         if self.angle[i][j] > 0:
           gradient1 = self.img[i - 1][j - 1]
           gradient3 = self.img[i + 1][j + 1]
         #   g3
         # g2 C g4
         # g1
         else:
           gradient3 = self.img[i - 1][j + 1]
           gradient1 = self.img[i + 1][j - 1]

temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
       temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
       if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
         result[i][j] = self.img[i][j]
       else:
         result[i][j] = 0
   self.img = result
   return self.img

def Hysteresis_thresholding(self):
   '''
   对生成的非极大化抑制结果图进行滞后阈值法,用强边延伸弱边,这里的延伸方向为梯度的垂直方向,
   将比低阈值大比高阈值小的点置为高阈值大小,方向在离散点上的确定与非极大化抑制相似。
   :return: 滞后阈值法结果图
   '''
   print ('Hysteresis_thresholding')

for i in range(1, self.y - 1):
     for j in range(1, self.x - 1):
       if self.img[i][j] >= self.HT_high_threshold:
         if abs(self.angle[i][j]) < 1:
           if self.img_origin[i - 1][j] > self.HT_low_threshold:
             self.img[i - 1][j] = self.HT_high_threshold
           if self.img_origin[i + 1][j] > self.HT_low_threshold:
             self.img[i + 1][j] = self.HT_high_threshold
           # g1 g2
           #  C
           #  g4 g3
           if self.angle[i][j] < 0:
             if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
               self.img[i - 1][j - 1] = self.HT_high_threshold
             if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
               self.img[i + 1][j + 1] = self.HT_high_threshold
           #  g2 g1
           #  C
           # g3 g4
           else:
             if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
               self.img[i - 1][j + 1] = self.HT_high_threshold
             if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
               self.img[i + 1][j - 1] = self.HT_high_threshold
         else:
           if self.img_origin[i][j - 1] > self.HT_low_threshold:
             self.img[i][j - 1] = self.HT_high_threshold
           if self.img_origin[i][j + 1] > self.HT_low_threshold:
             self.img[i][j + 1] = self.HT_high_threshold
           # g1
           # g2 C g4
           #   g3
           if self.angle[i][j] < 0:
             if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
               self.img[i - 1][j - 1] = self.HT_high_threshold
             if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
               self.img[i + 1][j + 1] = self.HT_high_threshold
           #   g3
           # g2 C g4
           # g1
           else:
             if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
               self.img[i + 1][j - 1] = self.HT_high_threshold
             if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
               self.img[i + 1][j - 1] = self.HT_high_threshold
   return self.img

def canny_algorithm(self):
   '''
   按照顺序和步骤调用以上所有成员函数。
   :return: Canny 算法的结果
   '''
   self.img = cv2.GaussianBlur(self.img, (self.Guassian_kernal_size, self.Guassian_kernal_size), 0)
   self.Get_gradient_img()
   self.img_origin = self.img.copy()
   self.Non_maximum_suppression()
   self.Hysteresis_thresholding()
   return self.img

Hough变换


# Author: Ji Qiu (BUPT)
# filename: my_hough.py

import numpy as np
import math

class Hough_transform:
 def __init__(self, img, angle, step=5, threshold=135):
   '''

:param img: 输入的图像
   :param angle: 输入的梯度方向矩阵
   :param step: Hough 变换步长大小
   :param threshold: 筛选单元的阈值
   '''
   self.img = img
   self.angle = angle
   self.y, self.x = img.shape[0:2]
   self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
   self.step = step
   self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)])
   self.threshold = threshold
   self.circles = []

def Hough_transform_algorithm(self):
   '''
   按照 x,y,radius 建立三维空间,根据图片中边上的点沿梯度方向对空间中的所有单
   元进行投票。每个点投出来结果为一折线。
   :return: 投票矩阵
   '''
   print ('Hough_transform_algorithm')

for i in range(1, self.y - 1):
     for j in range(1, self.x - 1):
       if self.img[i][j] > 0:
         y = i
         x = j
         r = 0
         while y < self.y and x < self.x and y >= 0 and x >= 0:
           self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
           y = y + self.step * self.angle[i][j]
           x = x + self.step
           r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
         y = i - self.step * self.angle[i][j]
         x = j - self.step
         r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
         while y < self.y and x < self.x and y >= 0 and x >= 0:
           self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
           y = y - self.step * self.angle[i][j]
           x = x - self.step
           r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

return self.vote_matrix

def Select_Circle(self):
   '''
   按照阈值从投票矩阵中筛选出合适的圆,并作极大化抑制,这里的非极大化抑制我采
   用的是邻近点结果取平均值的方法,而非单纯的取极大值。
   :return: None
   '''
   print ('Select_Circle')

houxuanyuan = []
   for i in range(0, math.ceil(self.y / self.step)):
     for j in range(0, math.ceil(self.x / self.step)):
       for r in range(0, math.ceil(self.radius / self.step)):
         if self.vote_matrix[i][j][r] >= self.threshold:
           y = i * self.step + self.step / 2
           x = j * self.step + self.step / 2
           r = r * self.step + self.step / 2
           houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r)))
   if len(houxuanyuan) == 0:
     print("No Circle in this threshold.")
     return
   x, y, r = houxuanyuan[0]
   possible = []
   middle = []
   for circle in houxuanyuan:
     if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
       possible.append([circle[0], circle[1], circle[2]])
     else:
       result = np.array(possible).mean(axis=0)
       middle.append((result[0], result[1], result[2]))
       possible.clear()
       x, y, r = circle
       possible.append([x, y, r])
   result = np.array(possible).mean(axis=0)
   middle.append((result[0], result[1], result[2]))

def takeFirst(elem):
     return elem[0]

middle.sort(key=takeFirst)
   x, y, r = middle[0]
   possible = []
   for circle in middle:
     if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
       possible.append([circle[0], circle[1], circle[2]])
     else:
       result = np.array(possible).mean(axis=0)
       print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
       self.circles.append((result[0], result[1], result[2]))
       possible.clear()
       x, y, r = circle
       possible.append([x, y, r])
   result = np.array(possible).mean(axis=0)
   print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
   self.circles.append((result[0], result[1], result[2]))

def Calculate(self):
   '''
   按照算法顺序调用以上成员函数
   :return: 圆形拟合结果图,圆的坐标及半径集合
   '''
   self.Hough_transform_algorithm()
   self.Select_Circle()
   return self.circles

调用


# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
 img_gray = cv2.imread(Path, cv2.IMREAD_GRAYSCALE)
 img_RGB = cv2.imread(Path)
 y, x = img_gray.shape[0:2]
 img_gray = cv2.resize(img_gray, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
 img_RGB = cv2.resize(img_RGB, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
 # canny takes about 40 seconds
 print ('Canny ...')
 canny = Canny(Guassian_kernal_size, img_gray, HT_high_threshold, HT_low_threshold)
 canny.canny_algorithm()
 cv2.imwrite(Save_Path + "canny_result.jpg", canny.img)

# hough takes about 30 seconds
 print ('Hough ...')
 Hough = Hough_transform(canny.img, canny.angle, Hough_transform_step, Hough_transform_threshold)
 circles = Hough.Calculate()
 for circle in circles:
   cv2.circle(img_RGB, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2)
 cv2.imwrite(Save_Path + "hough_result.jpg", img_RGB)
 print ('Finished!')

运行效果

Python实现Canny及Hough算法代码实例解析

来源:https://www.cnblogs.com/moonspace/p/13403099.html

标签:Python,Canny,Hough,算法
0
投稿

猜你喜欢

  • SQL SERVER 2005中的同步复制技术

    2009-01-05 13:44:00
  • PHP实现的XXTEA加密解密算法示例

    2023-07-13 22:29:49
  • Python做智能家居温湿度报警系统

    2022-02-01 12:31:50
  • python基本语法练习实例

    2021-02-25 06:50:07
  • 安装PyInstaller失败问题解决

    2022-03-18 04:21:41
  • 用 AjaxTags 简化 Ajax 开发

    2007-11-27 00:00:00
  • escape解决AJAX中文乱码的简单方法

    2008-10-23 14:32:00
  • js 获取、清空input type="file"的值示例代码

    2024-04-22 13:07:14
  • 使用SQL Server判断文件是否存在后再删除(详解)

    2024-01-19 13:03:33
  • 软件与网站设计的区别

    2009-05-04 14:30:00
  • sql注入数据库原理详情介绍

    2024-01-15 17:05:12
  • 浅谈vue获得后台数据无法显示到table上面的坑

    2024-05-13 09:07:16
  • Oracle9iPL/SQL编程的经验小结

    2010-07-23 12:49:00
  • Python基于jieba分词实现snownlp情感分析

    2023-11-14 21:43:38
  • JS打开新窗口的2种方式

    2023-07-07 02:44:49
  • Python Pandas如何获取和修改任意位置的值(at,iat,loc,iloc)

    2024-01-01 23:16:43
  • python计算两个地址之间的距离方法

    2023-09-01 01:40:59
  • 详解JavaScript对象的深浅复制

    2024-05-11 09:36:30
  • php字符串截取函数mb_substr用法实例分析

    2024-05-02 17:35:09
  • go语言实现简易比特币系统钱包的原理解析

    2024-05-22 10:12:02
  • asp之家 网络编程 m.aspxhome.com