详解在OpenCV中如何使用图像像素

作者:woshicver 时间:2022-05-04 16:05:08 

详解在OpenCV中如何使用图像像素

像素是计算机视觉中图像的重要属性。它们是表示图像 * 定空间中光的颜色强度的数值,是图像中数据的最小单位。

图像中的像素总数是高度、宽度和通道的乘积。

由于OpenCV中的图像被读取为像素值的Numpy数组,因此可以使用数组切片操作获取并处理由该区域的像素表示的图像区域。

切片操作用于检索序列子集,如列表、元组和数组,因此可用于获取图像区域的像素值,以便进行编辑、格式化或裁剪等处理。

切片操作

脚本:使用切片操作获取列表的子集。

# 切片字母列表
letters = ['a', 'b', 'c', 'd', 'e']

# 头三个字母
first_three = letters[:3]

# 最后三个字母
last_three = letters[-3:]

# 得到第二个到第四个字母
second_to_fourth = letters[1:4]

# 显示结果
print('First three letters: ', first_three)
print('Last three letters: ', last_three)
print('Second to fourth letters: ', second_to_fourth)

详解在OpenCV中如何使用图像像素

请注意,我使用索引值对字母列表进行切片。例如,传递起始索引1(列表中第二个字母的索引)和4将返回列表的一个片段,从第二个值到第四个值。

由于索引值用于以这种方式检索子集,因此它们也用于定位和检索图像中感兴趣的区域。

以图像中的区域为目标的切片由图像的两个轴(水平(X)和垂直(Y))的起始值和结束值定义,格式如下:

image[startY: endY, startx:endX]

它返回所需感兴趣区域的(图像像素的)Numpy数组。

那么,我们如何确定感兴趣区域的X轴和Y轴的起始值和结束值?

这些值(startX、endX、startY、endY)是映射出感兴趣区域的坐标值。

使用OpenCV显示时,这些值不会显示在图像旁边,但我们可以使用其他应用程序(如Photoshop、Corel Draw、Paint e.t.c)或其他python可视化库(如Matplotlib)来显示具有X和Y坐标值的图像。

一如既往,这在实践中得到了更好的理解。让我们使用matplotlib显示一个图像。pyplot,我们可以从中检索坐标,这些坐标映射出图像中的目标感兴趣区域。

我用加纳共和国国旗的图像来证明这一点。在这里,我的目标是图像中围绕黑星的区域。

获取感兴趣区域的坐标值

使用Matplotlib加载并显示图像

# 导入matplotlib的plot
import matplotlib.pyplot as plt

# 加载和显示原始图像
image = plt.imread('Flag_of_Ghana.png')

# 显示图片
plt.imshow("Original", image)
plt.plot()

输出:加载的图像及其X和Y坐标。

详解在OpenCV中如何使用图像像素

正如你所看到的,plt.imshow函数返回读取的图像以及x和y轴的坐标值。

然后,我们可以检索感兴趣区域(黑星)的起始和结束坐标值。

追踪黑星区域的坐标值

详解在OpenCV中如何使用图像像素

这幅图像显示了如何追踪黑星周围区域的坐标。

我们可以从图像中检索坐标(startY(y1)、endY(y2)、startX(x1)、endX(x2))。然后,我们可以定义两个轴的起点和终点坐标,并裁剪为:

image[y1: y2, x1:x2]

if we get y1, y2 = [145, 295] and x1, x2 = [245, 400]

那么绘制出黑星的区域将是:

black_star = image[145:295, 245:400]

这将返回映射感兴趣区域(本例中为黑星)的像素值(在Numpy数组中)。

现在,我们可以利用这种技术对图像区域进行定位和切片,以进行各种图像处理。

使用切片操作裁剪图像

1.加载并显示原始图像

# 导入matplotlib的plot
import matplotlib.pyplot as plt

# 加载和显示原始图像
image = plt.imread('Flag_of_Ghana.png')

# 显示图片
plt.imshow("Original", image)
plt.plot()

输出:显示加载的图像。

详解在OpenCV中如何使用图像像素

2.获取图像的空间维度

# 获取图像的空间尺寸
# 初始化
originY, originX = 0, 0

# 获取图像的高度和宽度
height, width = image.shape[:2]

# 计算图像的中心
(centerX, centerY) = (width // 2, height // 2)
print('Image height: ', height)
print('Image width: ', width)
print('Center location: ', (centerY, centerX))

输出:显示图像的空间尺寸。

详解在OpenCV中如何使用图像像素

3.裁剪图像

裁剪出图像的左上角

# 裁剪图像的左上角
# 高度从原点到中心
# 宽度从原点到中心

top_left = image[originY:centerY, originX:centerX]
cv2.imshow("Top-Left Corner", top_left)
cv2.waitKey(0)

输出:图像的左上角

详解在OpenCV中如何使用图像像素

裁剪出图像的右上角

# 裁剪右上角
# 高度从原点到中心
# 宽度从中心到右上角(宽度)

top_right = image[originY:centerY, centerX:width]
cv2.imshow("Top-Right Corner", top_right)
cv2.waitKey(0)

输出:图像的右上角

详解在OpenCV中如何使用图像像素

裁剪出图像的左下角

# 裁剪左下角
# 高度从中心到左下角(高度)
# 宽度从中心到右上角(宽度)

bottom_left = image[centerY:height, originX:centerX]
cv2.imshow("Bottom-Left Corner", bottom_left)
cv2.waitKey(0)

输出:图像的左下角

详解在OpenCV中如何使用图像像素

裁剪出图像的右下角

# 裁剪右下角
# 高度从中心到左下角(高度)
# 宽度从中心到右上角(宽度)

bottom_right = image[centerY:height, centerX:width]
cv2.imshow("Bottom-Right Corner", bottom_right)
cv2.waitKey(0)

输出:左下角。

详解在OpenCV中如何使用图像像素

4.使用尺寸将部分图像设置为特定颜色。

# 设置原始图像的左上角为绿色
image[originY:centerY, originX:centerX] = (0, 255, 0)

# 显示更新后的图像
cv2.imshow("Updated", image)
cv2.waitKey(0)

输出:将左上角设置为绿色

详解在OpenCV中如何使用图像像素

来源:https://blog.csdn.net/woshicver/article/details/123244053

标签:Python,OpenCV,图像,像素
0
投稿

猜你喜欢

  • BeautifulSoup获取指定class样式的div的实现

    2023-05-10 20:39:14
  • 关于sql server批量插入和更新的两种解决方案

    2024-01-15 02:20:42
  • SQL Server中TRUNCATE事务回滚操作方法

    2024-01-20 14:43:23
  • 浅谈终端直接执行py文件,不需要python命令

    2022-12-25 14:38:11
  • 缓存是如何实现的?

    2009-11-01 15:35:00
  • Django 数据库同步操作技巧详解

    2024-01-28 02:26:14
  • SQL Server2016正式版安装配置方法图文教程

    2024-01-18 10:21:52
  • python读取pdf格式文档的实现代码

    2023-12-10 07:25:49
  • vue转react useEffect的全过程

    2024-05-02 16:32:22
  • python3中eval函数用法使用简介

    2023-08-12 02:28:48
  • vue+echarts封装气泡图的方法

    2024-05-09 15:09:45
  • 提升设计品质的8个布局方案[译]

    2010-03-18 16:06:00
  • MYSQL server has gone away解决办法

    2010-11-25 17:22:00
  • python pandas模块基础学习详解

    2022-11-06 22:45:58
  • Python中turtle库的使用实例

    2023-08-01 23:05:56
  • python动态参数用法实例分析

    2021-03-02 06:27:51
  • 重命名批处理python脚本

    2021-04-27 22:56:38
  • pycharm激活码免费分享适用最新pycharm2020.2.3永久激活

    2021-12-11 10:17:09
  • cv2.getStructuringElement()函数及开、闭、腐蚀、膨胀原理讲解

    2023-08-24 23:07:23
  • 编写python代码实现简单抽奖器

    2023-04-07 12:32:48
  • asp之家 网络编程 m.aspxhome.com