在python下实现word2vec词向量训练与加载实例

作者:csg_mozl123 时间:2022-06-12 23:49:05 

项目中要对短文本进行相似度估计,word2vec是一个很火的工具。本文就word2vec的训练以及加载进行了总结。

word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型。

通过该模型可以对单词的相似度进行量化分析。

word2vec的训练方法有2种,一种是通过word2vec的官方手段,在linux环境下编译并执行。

在github上下载word2vec的安装包,然后make编译。查看demo-word.sh脚本,得到word2vec的执行命令:

./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15

参数解释:

1)-train:需要训练的语料库,text8为语料库文件名

2)-output:输出的词向量文件,vectors.bin为输出词向量文件名,.bin后缀为二进制文件。若要以文档的形式查看词向量文件,需要将-binary参数的值由1改为0

3)-cbow:是否使用cbow模型进行训练。参数为1表示使用cbow,为0表示不使用cbow

4)-size:词向量的维数,默认为200维。

5)-window:训练过程中截取上下文的窗口大小,默认为8,即考虑一个词前8个和后8个词

6)-negative:若参数非0,表明采样随机负采样的方法,负样本子集的规模默认为25。若参数值为0,表示不使用随机负采样模型。使用随机负采样比Hierarchical Softmax模型效率更高。

7)-hs:是否采用基于Hierarchical Softmax的模型。参数为1表示使用,0表示不使用

8)-sample:语料库中的词频阈值参数,词频大于该阈值的词,越容易被采样。默认为e^-4.

9)-threads:开启的线程数目,默认为20.

10)-binary:词向量文件的输出形式。1表示输出二进制文件,0表示输出文本文件

11)-iter:训练的迭代次数。一定范围内,次数越高,训练得到的参数会更准确。默认值为15次.

./word2vec -train mytext.txt -output vectors.txt -cbow 1 -size 200 -window 5 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 0 -iter 30

示例为训练一个名mytext.txt的文档。设置输出词向量的格式为.txt文本文档,所以还需要将-binary参数设置为0.

训练模型采用基于随机负采样的cbow模型。由于短文本字数极为有限,所以-window参数设置为5,设置词向量的维数

为200,为了使得到的参数更准确,将迭代次数增加至30.其他参数使用默认值。

训练以后得到一个txt文本,该文本的内容为:每行一个单词,单词后面是对应的词向量。

gensim加载词向量:

保存词向量模型到pkl中(注意:这里是对词向量模型进行构建)


from gensim.models import KeyedVectors
if not os.path.exists(pkl_path): # 如果pickle模型不存在,则构建一个

print '词向量模型不存在,开始构建词向量模型...'
   Word2Vec = KeyedVectors.load_word2vec_format(vecs_path, binary=False) # 加载词向量模型
   f = file(pkl_path, 'wb')
   pickle.dump(Word2Vec, f, True)
   f.close()
   print '词向量模型构建完毕...'

f= file(pkl_path, 'rb')# 打开pkl文件
word2vec=pickle.load(f)# 载入pkl

第二种方法是使用gensim模块训练词向量:


from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence

try:
 import cPickle as pickle
except ImportError:
 import pickle

sentences = LineSentence(path)# path为要训练的txt的路径
# 对sentences表示的语料库进行训练,训练200维的词向量,窗口大小设置为5,最小词频设置为5
model = Word2Vec(sentences, size=200, window=5, min_count=5)
model.save(model_path)#model_path为模型路径。保存模型,通常采用pkl形式保存,以便下次直接加载即可

# 加载模型
model = Word2Vec.load(model_path)

完整的训练,加载通常采用如下方式:


if not os.path.exists(model_path):
   sentences = LineSentence(path)
   model = Word2Vec(sentences, size=200, window=5, min_count=5)
   model.save(model_path)
model = Word2Vec.load(model_path)

这样一来,就可以通过pkl化的词向量模型进行读取了。pkl的目的是为了保存程序中变量的状态,以便下次直接访问,

不必重新训练模型。

详细内容间gensim官方库

https://radimrehurek.com/gensim/models/word2vec.html

来源:https://blog.csdn.net/u012260341/article/details/7896149

标签:python,word2vec,词向量,训练,加载
0
投稿

猜你喜欢

  • linux下讲解MySQL安装与登录方法

    2024-01-14 21:30:01
  • FCKEditor v2.6 编辑器配置图解教程

    2024-01-04 22:16:05
  • python多进程中的生产者和消费者模型详解

    2022-09-21 04:46:43
  • 个人从事设计行业40句观感

    2008-04-07 13:58:00
  • python实现126邮箱发送邮件

    2022-07-29 23:37:56
  • MySQL实例讲解子查询的使用

    2024-01-17 05:38:27
  • python将每个单词按空格分开并保存到文件中

    2023-07-01 12:46:31
  • Python 类的魔法属性用法实例分析

    2022-02-20 07:22:15
  • 详解python 内存优化

    2022-06-04 16:31:43
  • 常见Dreamweaver使用过程中的问题及解决办法

    2011-03-17 16:16:00
  • ASP数据库连接方式大全

    2023-07-12 05:52:59
  • Node.js 的异步 IO 性能探讨

    2024-05-13 09:58:15
  • python关闭print输出信息详情

    2023-06-21 17:21:09
  • python技巧分享Excel创建和修改

    2022-01-09 12:04:59
  • 详解scratch3.0二次开发之scratch-blocks中的blocks的类型、定义和使用方法

    2023-10-18 06:02:09
  • Python实现桌面翻译工具【新手必学】

    2021-03-27 08:32:47
  • tkinter如何实现label超链接调用浏览器打开网址

    2023-04-05 15:08:20
  • [关注细节的最佳方案]有效期时间格式的展现

    2009-10-30 18:51:00
  • 解决MySQL 5数据库连接超时问题

    2009-03-25 15:24:00
  • python调用百度语音REST API

    2022-09-16 18:19:07
  • asp之家 网络编程 m.aspxhome.com