如何利用opencv训练自己的模型实现特定物体的识别

作者:大草原的小灰灰 时间:2022-06-19 02:05:39 

1.说明

opencv安装包中有训练好的分类器文件,可以实现人脸的识别。当然,我们也可以训练自己的分类器文件,实现对特定物体的识别。本文章就详细介绍下如何训练自己的分类器文件。

2.效果

我训练的是检测苹果的的分类器文件,可以实现对苹果的识别。

如何利用opencv训练自己的模型实现特定物体的识别

3.准备

3.1 程序准备

  • 训练自己的分类器文件,需要用到两个程序 : opencv_createsamples.exe和opencv_traincascade.exe

  • opencv最新的安装包中没有这两个程序,我们可以下载 3.4.14这个版本的安装包进行安装。

    • opencv安装包 : opencv-3.4.14-vc14_vc15.exe

  • 安装完成后,在这个目录下就会有这两个程序文件 opencv\build\x64\vc15\bin

3.2 样本数据准备

正样本数据 : 也就是我们需要检测的物体图片,可以自己用手机拍摄下你要检测的物体的图片,多拍摄一些不同角度的图片。

我的正样本数据在这个目录下 image\positive\img,大概有50多张图片

如何利用opencv训练自己的模型实现特定物体的识别

然后在image\positive目录下新建一个info.dat文件,在其中记录正样本图片信息

如何利用opencv训练自己的模型实现特定物体的识别

参数介绍

  • img/1.jpg : 文件路径和文件名

  • 1:表示图片中有几个目标物体,一般一个就行了

  • 0,0:目标物体起始坐标

  • 1280,1706:目标物体大小

负样本数据:不包含我们要检测物体的图片,可以拍摄一些风景之类的图片,尽量多一些。

我的负样本数据在这个目录下 image\negitive\img

如何利用opencv训练自己的模型实现特定物体的识别

然后在image\negitive目录下新建一个bg.txt文件,在其中记录负样本图片信息

负样本图片信息我们只需记录路径和文件名就行了,但是这里要注意,路径名要写绝对路径,后面会说为什么。

如何利用opencv训练自己的模型实现特定物体的识别

3.3 正样本VEC文件创建

  • 训练样本之前先要生成vec文件,要用到opencv_createsamples.exe程序

  • opencv_createsamples.exe部分参数介绍

[-info <collection_file_name>]  # 记录样本数据的文件(就是我们刚才创建的info.data文件)
 [-img <image_file_name>]    
 [-vec <vec_file_name>]   # 输出文件,内含用于训练的正样本。
 [-bg <background_file_name>]  # 背景图像的描述文件
 [-num <number_of_samples = 1000>]   #样本数量(默认为1000)
 [-bgcolor <background_color = 0>]    #指定背景颜色
 [-w <sample_width = 24>]#输出样本的宽度(以像素为单位)
 [-h <sample_height = 24>]#输出样本的高度(以像素为单位)

参考

在安装包的这个目录下opencv\build\x64\vc15\bin可以找到opencv_createsamples.exe程序,我们生成下vec文件

D:\opencv3.4.12\opencv\build\x64\vc15\bin\opencv_createsamples.exe -info C:\Users\lng\Desktop\image\positive\info.dat -vec C:\Users\lng\Desktop\image\sample.vec -num 58 -bgcolor 0 -bgthresh 0 -w 24 -h 24

在image目录下就生成了vec文件

如何利用opencv训练自己的模型实现特定物体的识别

4.样本数据训练

  • 完成上面的准备工作,就可以开始训练样本。训练样本需要用到opencv_traincascaded.exe程序

  • opencv_traincascaded.exe程序部分参数介绍

-data <cascade_dir_name>     #目录名,如不存在训练程序会创建它,用于存放训练好的分类器
-vec <vec_file_name>              #包含正样本的vec文件名
-bg <background_file_name>   #背景描述文件
[-numPos <number_of_positive_samples = 2000>]   #每级分类器训练时所用的正样本数目
[-numNeg <number_of_negative_samples = 1000>]   #每级分类器训练时所用的负样本数目
[-numStages <number_of_stages = 20>]   #训练的分类器的级数
--cascadeParams--
[-featureType <{HAAR(default), LBP, HOG}>]  # 特征的类型: HAAR - 类Haar特征; LBP - 局部纹理模式特征
[-w <sampleWidth = 24>] #训练样本的尺寸(单位为像素)
[-h <sampleHeight = 24>] #训练样本的尺寸(单位为像素)
--boostParams--
[-minHitRate <min_hit_rate> = 0.995>] #分类器的每一级希望得到的最小检测率
[-maxFalseAlarmRate <max_false_alarm_rate = 0.5>] #分类器的每一级希望得到的最大误检率

参考

  • 在安装包的这个目录下opencv\build\x64\vc15\bin可以找到opencv_traincascade.exe程序,开始训练样本

  • 这里注意下

    • 指定-bg参数时,文件名前不能加路径,所以需要把刚才在image\negitive下创建的bg.txt文件拷贝到opencv_traincascade.exe程序所在目录下,所以要在bg.txt写负样本图片的绝对路径。

    • 指定numPos参数时,因为每个阶段训练时有些正样本可能会被识别为负样本,故每个训练阶段后都会消耗一定的正样本。因此,此处使用的正样本数量绝对不能等于或超过positive文件夹下的正样本个数,一般留有一定的余量

    • 指定-numNeg参数时,可以多于negitive目录下的负样本数量

D:\opencv3.4.12\opencv\build\x64\vc15\bin\opencv_traincascade.exe -data C:\Users\lng\Desktop\image -vec C:\Users\lng\Desktop\image\sample.vec -bg bg.txt -numPos 50 -numNeg 500 -numStages 12 -feattureType HAAR -w 24 -h 24 -minHitRate 0.995 -maxFalseAlarmRate 0.5

执行结果

PARAMETERS:
cascadeDirName: C:\Users\lng\Desktop\image
vecFileName: C:\Users\lng\Desktop\image\sample.vec
bgFileName: bg.txt
numPos: 50
numNeg: 500
numStages: 12
precalcValBufSize[Mb] : 1024
precalcIdxBufSize[Mb] : 1024
acceptanceRatioBreakValue : -1
stageType: BOOST
featureType: HAAR
sampleWidth: 24
sampleHeight: 24
boostType: GAB
minHitRate: 0.995
maxFalseAlarmRate: 0.5
weightTrimRate: 0.95
maxDepth: 1
maxWeakCount: 100
mode: BASIC
Number of unique features given windowSize [24,24] : 162336

===== TRAINING 0-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 1
Precalculation time: 0.581
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|     0.05|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 1 seconds.

===== TRAINING 1-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 0.084832
Precalculation time: 0.576
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|    0.146|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 3 seconds.

===== TRAINING 2-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 0.0149993
Precalculation time: 0.592
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|    0.186|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 5 seconds.

===== TRAINING 3-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 0.00288033
Precalculation time: 0.652
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|    0.298|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 7 seconds.

===== TRAINING 4-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 0.000768845
Precalculation time: 0.615
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1|    0.366|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 11 seconds.

===== TRAINING 5-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    500 : 0.000375057
Precalculation time: 0.61
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1|    0.366|
+----+---------+---------+
END>
Training until now has taken 0 days 0 hours 0 minutes 15 seconds.

===== TRAINING 6-stage =====
<BEGIN
POS count : consumed   50 : 50
NEG count : acceptanceRatio    2 : 0.00016276
Required leaf false alarm rate achieved. Branch training t

训练完成后,在img目录下就会生成以下文件。

如何利用opencv训练自己的模型实现特定物体的识别

cascade.xml就是我们需要的分类器文件,其他都是过程文件。

5.测试代码

main.cpp

#include <iostream>
#include <opencv2/opencv.hpp>

char* face_cascade_name = "C:\\Users\\lng\\Desktop\\image\\cascade.xml";

void faceRecongize(cv::CascadeClassifier faceCascade, cv::Mat frame);

int main(){
   cv::VideoCapture *videoCap = new cv::VideoCapture;

cv::CascadeClassifier faceCascade;

// 加载苹果分类器文件
if (!faceCascade.load(face_cascade_name)) {
std::cout << "load face_cascade_name failed. " << std::endl;
return -1;
}

// 打开摄像机
videoCap->open(0);

if (!videoCap->isOpened()) {
videoCap->release();
std::cout << "open camera failed"<< std::endl;
       return -1;
}

std::cout << "open camera success"<< std::endl;

while(1){
cv::Mat frame;
//读取视频帧
videoCap->read(frame);

if (frame.empty()) {
videoCap->release();
return -1;
}

//进行苹果识别
faceRecongize(faceCascade, frame);

//窗口进行展示
       imshow("face", frame);

//等待回车键按下退出程序
if (cv::waitKey(30) == 13) {
cv::destroyAllWindows();
return 0;
}
   }

system("pause");
   return 0;
}

void faceRecongize(cv::CascadeClassifier faceCascade, cv::CascadeClassifier eyesCascade, cv::CascadeClassifier mouthCascade, cv::Mat frame) {
std::vector<cv::Rect> faces;

// 检测苹果
faceCascade.detectMultiScale(frame, faces, 1.1, 2, 0 | cv::CASCADE_SCALE_IMAGE, cv::Size(30, 30));
for (int i = 0; i < faces.size(); i++) {

// 用椭圆画出苹果部分
       cv::Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
ellipse(frame, center, cv::Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, cv::Scalar(255, 0, 255), 4, 8, 0);

cv::Mat faceROI = frame(faces[i]);
std::vector<cv::Rect> eyes;

// 苹果上方区域写字进行标识
cv::Point centerText(faces[i].x + faces[i].width / 2 - 40, faces[i].y - 20);
cv::putText(frame, "apple", centerText, cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 2);

}
}

CMakeLists

cmake_minimum_required (VERSION 3.5)
project (faceRecongize2015)

MESSAGE(STATUS "PROJECT_SOURCE_DIR " ${PROJECT_SOURCE_DIR})
SET(SRC_LISTS ${PROJECT_SOURCE_DIR}/src/main.cpp)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")

#set(CMAKE_AUTOMOC ON)
#set(CMAKE_AUTOUIC ON)
#set(CMAKE_AUTORCC ON)

# 配置头文件目录
include_directories(${PROJECT_SOURCE_DIR}/src)
include_directories("D:\\opencv3.4.12\\opencv\\build\\include")
include_directories("D:\\opencv3.4.12\\opencv\\build\\include\\opencv2")

# 设置不显示命令框
if(MSVC)
#set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup")
endif()

# 添加库文件
set(PRO_OPENCV_LIB "D:\\opencv3.4.12\\opencv\\build\\x64\\vc15\\lib\\opencv_world3412.lib" "D:\\opencv3.4.12\\opencv\\build\\x64\\vc15\\lib\\opencv_world3412d.lib")

IF(WIN32)
   # 生成可执行程序
ADD_EXECUTABLE(faceRecongize2015 ${SRC_LISTS})
# 链接库文件
   TARGET_LINK_LIBRARIES(faceRecongize2015 ${PRO_OPENCV_LIB})
ENDIF()

6.编译说明

我的opencv 3.4.12的安装路径是 D:\opencv3.4.12

目录结构

- src
 - mian.cpp
- build_x64
- CMakeLists

编译命令, 在build_x64目录下执行

cmake -G "Visual Studio 14 2015 Win64" ..
cmake --build ./ --config Release

编译完成后拷贝D:\opencv3.4.12\opencv\build\x64\vc15\bin目录下的opencv_world3412.dll和opencv_world3412d.dll到可执行程序目录下。

备注

经过测试,自己训练的样本,准确度还是比较差的。可能是正样本数据太少,且图片背景占据位置较多。要提高准确度,首先增加正样本图片数量,还要就是尽量让你的目标物体占满整个图片,不要留有太多的背景。而且也要有尽可能多的负样本数据。

来源:https://blog.csdn.net/new9232/article/details/127439039

标签:opencv,识别,物体
0
投稿

猜你喜欢

  • Golang中struct{}和struct{}{}的区别解析

    2024-04-23 09:36:21
  • Python数据可视化之简单折线图的绘制

    2021-05-25 11:59:30
  • python3 pillow模块实现简单验证码

    2021-07-04 11:10:44
  • Python随机生成身份证号码及校验功能

    2023-03-20 08:30:47
  • 统计出现最多的字符次数的js代码

    2023-10-09 18:58:07
  • python操作openpyxl导出Excel 设置单元格格式及合并处理代码实例

    2022-09-27 13:07:54
  • 利用Python自制网页并实现一键自动生成探索性数据分析报告

    2023-01-19 13:20:12
  • Python中如何使用Matplotlib库绘制图形

    2021-09-27 11:59:04
  • JavaScript禁止右击保存图片,禁止拖拽图片的实现代码

    2024-05-11 09:07:16
  • PHP基础知识详细讲解

    2023-06-03 15:41:45
  • Django的用户模块与权限系统的示例代码

    2023-04-27 14:48:23
  • Python列表推导式的使用方法

    2023-05-10 07:01:46
  • 梅尔倒谱系数(MFCC)实现

    2022-08-08 18:28:08
  • JavaScript控制flash操作 兼容IE FF[译]

    2009-11-29 16:28:00
  • python实现linux下使用xcopy的方法

    2022-08-16 07:52:09
  • Python装饰器(decorator)定义与用法详解

    2022-07-21 03:11:25
  • Thinkphp6.0中间件的具体使用

    2024-04-30 08:47:21
  • Golang实现将视频按照时间维度剪切的工具

    2024-02-14 08:19:08
  • 将表数据生成Insert脚本 比较好用的生成插入语句的SQL脚本

    2024-01-21 13:11:19
  • python datetime中strptime用法详解

    2022-03-08 19:31:48
  • asp之家 网络编程 m.aspxhome.com