TensorFlow MNIST手写数据集的实现方法
作者:Baby-Lily 时间:2022-12-19 19:45:02
MNIST数据集介绍
MNIST数据集中包含了各种各样的手写数字图片,数据集的官网是:http://yann.lecun.com/exdb/mnist/index.html,我们可以从这里下载数据集。使用如下的代码对数据集进行加载:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
运行上述代码会自动下载数据集并将文件解压在MNIST_data文件夹下面。代码中的one_hot=True,表示将样本的标签转化为one_hot编码。
MNIST数据集中的图片是28*28的,每张图被转化为一个行向量,长度是28*28=784,每一个值代表一个像素点。数据集中共有60000张手写数据图片,其中55000张训练数据,5000张测试数据。
在MNIST中,mnist.train.images是一个形状为[55000, 784]的张量,其中的第一个维度是用来索引图片,第二个维度图片中的像素。MNIST数据集包含有三部分,训练数据集,验证数据集,测试数据集(mnist.validation)。
标签是介于0-9之间的数字,用于描述图片中的数字,转化为one-hot向量即表示的数字对应的下标为1,其余的值为0。标签的训练数据是[55000,10]的数字矩阵。
下面定义了一个简单的网络对数据集进行训练,代码如下:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
w = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.zeros([10]))
pred = tf.matmul(x, w) + b
pred = tf.nn.softmax(pred)
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
training_epochs = 25
batch_size = 100
display_step = 1
save_path = 'model/'
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x:batch_xs, y:batch_ys})
avg_cost += c / total_batch
if (epoch + 1) % display_step == 0:
print('epoch= ', epoch+1, ' cost= ', avg_cost)
print('finished')
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('accuracy: ', accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
save = saver.save(sess, save_path=save_path+'mnist.cpkt')
print(" starting 2nd session ...... ")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, save_path=save_path+'mnist.cpkt')
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('accuracy: ', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
output = tf.argmax(pred, 1)
batch_xs, batch_ys = mnist.test.next_batch(2)
outputval= sess.run([output], feed_dict={x:batch_xs, y:batch_ys})
print(outputval)
im = batch_xs[0]
im = im.reshape(-1, 28)
plt.imshow(im, cmap='gray')
plt.show()
im = batch_xs[1]
im = im.reshape(-1, 28)
plt.imshow(im, cmap='gray')
plt.show()
总结
以上所述是小编给大家介绍的TensorFlow MNIST手写数据集的实现方法,希望对大家有所帮助!
来源:https://www.cnblogs.com/baby-lily/p/10961482.html
标签:TensorFlow,MNIST,数据集
0
投稿
猜你喜欢
PHP header()函数常用方法总结
2023-09-06 16:51:50
window.location.hash的应用及浏览器的支持测试
2009-07-07 11:52:00
一款强大的端到端测试工具Playwright介绍
2021-06-19 11:59:55
Linux系统下导出ORACLE数据库出现Exporting questionable statistics.错误 处理
2010-07-16 13:27:00
总结分析Python的5个硬核函数
2022-04-12 11:05:42
简单实现js选项卡切换效果
2024-05-03 15:05:24
Python struct.unpack
2023-10-14 21:29:56
10分钟学会Google Map API (一)
2009-06-07 18:17:00
Python数学建模PuLP库线性规划入门示例详解
2023-06-13 13:06:20
go语言LeetCode题解720词典中最长的单词
2023-08-05 19:46:04
如何用Python来理一理红楼梦里的那些关系
2023-03-28 08:56:31
python实现12306登录并保存cookie的方法示例
2021-08-05 18:37:55
解读sql中timestamp和datetime之间的转换
2024-01-26 18:59:14
cpan安装Net::SSH::Perl中遇到的一些问题
2023-05-14 04:40:55
Vue3+Vite实现动态路由的详细实例代码
2023-07-02 16:58:37
Python脚本实现下载合并SAE日志
2023-04-13 06:41:41
将不规则的Python多维数组拉平到一维的方法实现
2023-11-05 19:47:15
ACCESS的参数化查询 附ASP和C#(ASP.NET)函数
2008-01-10 12:18:00
python连接mysql并提交mysql事务示例
2024-01-15 04:43:37
python multiprocessing模块用法及原理介绍
2021-01-27 06:22:44