Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

作者:_almost_ 时间:2022-08-08 01:14:46 

本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算。分享给大家供大家参考,具体如下:

算法思想

基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果。

几个必要概念:

ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合。
核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象。
密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达。
密度可达:若样本序列p1, p2, ……, pn。pi+1由pi密度直达,则p1由pn密度可达。

大致思想如下:

1. 初始化核心对象集合T为空,遍历一遍样本集D中所有的样本,计算每个样本点的ε-邻域中包含样本的个数,如果个数大于等于MinPts,则将该样本点加入到核心对象集合中。初始化聚类簇数k = 0, 初始化未访问样本集和为P = D。

2. 当T集合中存在样本时执行如下步骤:

  • 2.1记录当前未访问集合P_old = P

  • 2.2从T中随机选一个核心对象o,初始化一个队列Q = [o]

  • 2.3P = P-o(从T中删除o)

  • 2.4当Q中存在样本时执行:

  • 2.4.1取出队列中的首个样本q

  • 2.4.2计算q的ε-邻域中包含样本的个数,如果大于等于MinPts,则令S为q的ε-邻域与P的交集,

    Q = Q+S, P = P-S

  • 2.5 k = k + 1,生成聚类簇为Ck = P_old - P

  • 2.6 T = T - Ck

3. 划分为C= {C1, C2, ……, Ck}

Python代码实现


#-*- coding:utf-8 -*-
import math
import numpy as np
import pylab as pl
#数据集:每三个是一组分别是西瓜的编号,密度,含糖量
data = """
1,0.697,0.46,2,0.774,0.376,3,0.634,0.264,4,0.608,0.318,5,0.556,0.215,
6,0.403,0.237,7,0.481,0.149,8,0.437,0.211,9,0.666,0.091,10,0.243,0.267,
11,0.245,0.057,12,0.343,0.099,13,0.639,0.161,14,0.657,0.198,15,0.36,0.37,
16,0.593,0.042,17,0.719,0.103,18,0.359,0.188,19,0.339,0.241,20,0.282,0.257,
21,0.748,0.232,22,0.714,0.346,23,0.483,0.312,24,0.478,0.437,25,0.525,0.369,
26,0.751,0.489,27,0.532,0.472,28,0.473,0.376,29,0.725,0.445,30,0.446,0.459"""
#数据处理 dataset是30个样本(密度,含糖量)的列表
a = data.split(',')
dataset = [(float(a[i]), float(a[i+1])) for i in range(1, len(a)-1, 3)]
#计算欧几里得距离,a,b分别为两个元组
def dist(a, b):
 return math.sqrt(math.pow(a[0]-b[0], 2)+math.pow(a[1]-b[1], 2))
#算法模型
def DBSCAN(D, e, Minpts):
 #初始化核心对象集合T,聚类个数k,聚类集合C, 未访问集合P,
 T = set(); k = 0; C = []; P = set(D)
 for d in D:
   if len([ i for i in D if dist(d, i) <= e]) >= Minpts:
     T.add(d)
 #开始聚类
 while len(T):
   P_old = P
   o = list(T)[np.random.randint(0, len(T))]
   P = P - set(o)
   Q = []; Q.append(o)
   while len(Q):
     q = Q[0]
     Nq = [i for i in D if dist(q, i) <= e]
     if len(Nq) >= Minpts:
       S = P & set(Nq)
       Q += (list(S))
       P = P - S
     Q.remove(q)
   k += 1
   Ck = list(P_old - P)
   T = T - set(Ck)
   C.append(Ck)
 return C
#画图
def draw(C):
 colValue = ['r', 'y', 'g', 'b', 'c', 'k', 'm']
 for i in range(len(C)):
   coo_X = []  #x坐标列表
   coo_Y = []  #y坐标列表
   for j in range(len(C[i])):
     coo_X.append(C[i][j][0])
     coo_Y.append(C[i][j][1])
   pl.scatter(coo_X, coo_Y, marker='x', color=colValue[i%len(colValue)], label=i)
 pl.legend(loc='upper right')
 pl.show()
C = DBSCAN(dataset, 0.11, 5)
draw(C)

本机测试运行结果图:

Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

希望本文所述对大家Python程序设计有所帮助。

来源:https://blog.csdn.net/u014028027/article/details/72185796

标签:Python,聚类算法
0
投稿

猜你喜欢

  • python 实现返回一个列表中出现次数最多的元素方法

    2023-01-04 14:36:54
  • 让IE6更快的走向灭亡

    2010-02-03 15:05:00
  • MySQL怎么给字符串字段加索引

    2024-01-25 10:19:57
  • 详细讲解HTTP协议工作方式

    2022-01-08 11:55:59
  • Pytorch中transforms.Resize()的简单使用

    2023-06-17 02:23:28
  • OpenCV利用python来实现图像的直方图均衡化

    2023-01-22 15:05:36
  • 详解uniapp页面跳转URL传参大坑

    2023-09-15 09:52:43
  • Python爬取三国演义的实现方法

    2022-12-11 20:07:37
  • JS IOS/iPhone的Safari浏览器不兼容Javascript中的Date()问题如何解决

    2023-09-23 19:39:47
  • jQuery点击改变链接的文本

    2010-03-19 18:11:00
  • thinkPHP框架通过Redis实现增删改查操作的方法详解

    2023-11-14 14:50:55
  • python基本数据类型练习题

    2022-07-21 14:26:26
  • mysql如何查询日期与时间

    2024-01-26 02:03:17
  • Oracle与SQL Server数据库镜像对比

    2009-03-25 14:27:00
  • Git的简单理解及基础操作命令详解

    2023-01-17 11:03:35
  • Python编程pygal绘图实例之XY线

    2021-02-17 10:42:10
  • python itchat实现微信好友头像拼接图的示例代码

    2021-04-12 18:14:56
  • Tensorflow加载与预处理数据详解实现方法

    2023-01-29 02:57:09
  • python中matplotlib的颜色以及形状实例详解

    2021-06-30 23:04:35
  • 如何基于pythonnet调用halcon脚本

    2022-09-27 16:34:23
  • asp之家 网络编程 m.aspxhome.com