pandas实现datetime64与unix时间戳互转
作者:Bruce-XIAO 时间:2022-10-28 18:59:11
datetime64与unix时间戳互转
在用pandas处理数据时,经常要处理一些时间类型数据,经常把pandas时间类型与datetime模块,还有python自带的time模块搞混淆,记录之。
unix 时间戳与pandas中的Timestamp互转
import time
def unixToTime(unixtime):
return pd.to_datetime(unixtime,unit='s',utc=True).tz_convert('Asia/Shanghai') #utc时间比上海时间少8小时,做时区转换
def timeToUnix(dt64):
return dt64.astype('datetime64[s]').astype('int')
unixtime = 1514737265
print(unixToTime(unixtime))
#python 自带time模块的local_time可以直接转北京时间
struct_time = time.localtime(unixtime)
print(struct_time)
#转化格式
dd = time.strftime("%Y-%m-%d %H:%M:%S",struct_time)
print(dd)
输出:
2018-01-01 00:21:05+08:00
time.struct_time(tm_year=2018, tm_mon=1, tm_mday=1, tm_hour=0, tm_min=21, tm_sec=5, tm_wday=0, tm_yday=1, tm_isdst=0)
2018-01-01 00:21:05
datetime模块
python中还有一个datetime模块,这个模块包含一些函数,如today,now,fromtimestamp,strptime,Datetime
from datetime import datetime
import pandas as pd
startTime = datetime.now()
print(startTime)
print(type(startTime))
#datetime 字符串转时间戳
timestr = '2018-01-01 00:21:05'
date_time = datetime.strptime(timestr, "%Y-%m-%d %H:%M:%S")
print(type(date_time))
print(date_time)
输出:
2020-12-16 22:22:42.451086
<class 'datetime.datetime'>
#pandas 字符串转时间戳
pd_time = pd.to_datetime(time,format="%Y-%m-%d %H:%M:%S")
#或者
#time = datetime(2018,1,1,0,21,5)
#pd_time = pd.to_datetime(timestr,format="YYYY-MM-DD HH:MM:SS")
print(type(pd_time))
print(pd_time)
输出:
<class 'datetime.datetime'>
2018-01-01 00:21:05
#取到年,月,日,日期,小时,分钟,秒以及一周中的第几天
year = pd_time.year
month = pd_time.month
day = pd_time.day
date = pd_time.date
hour = pd_time.hour
minute = pd_time.minute
seconds = pd_time.second
print(year)
print(month)
print(day)
print(hour)
print(minute)
print(seconds)
输出:
2018
1
1
0
21
5
pandas默认时间格式转换为unix间戳
Pandas读取csv文件时,时间会自动显示为‘YYYY-MM-DD HH:MM:SS’的格式,那么如果想要将这个时间转换为 Unix时间戳 呢?
先科普一下,什么是 Unix时间戳 呢?
Unix时间戳 是一种时间表示方式,是一个整型值,代表从格林威治时间1970年01月01日00时00分00秒起至现在经过的总秒数。
举个栗子
一个值为 1492751843 的Unix时间戳 ==>
把它转换为 北京时间为 2017/4/21 13:17:23
实际上,Pandas中时间用 pandas.datetime() 转换为 pandas.tslib.Timestamp(时间戳) 格式之后,已经变成了整型存储,即 Unix时间戳形式 。
如果我们需要这个时间戳的整型格式,可以用 time[0].value 这个属性把它提取出来。
样例
>>> import pandas as pd # 导入pandas库
>>> data = pd.read_csv('airquality.csv') # 读入数据文件
>>> data.time = pd.to_datetime(data.time) # 将时间那一列从str转换为时间戳格式
>>> type(data.time[0]) # 查看转换之后的格式
<class 'pandas.tslib.Timestamp'>
>>> data.time[0] # 查看第一条数据,默认显示为‘YYYY-MM-DD HH:MM:SS'格式
Timestamp('2014-05-01 00:00:00')
>>> data.time[0].value # 查看第一条数据的Unix时间戳格式
1398902400000000000L
>>> data.time[0].value//10**9 # 转换为秒级
1398902400L
>>> t1 = [t.value for t in data.time] # 提取整列(纳秒级,即1s = 1,000,000,000 ns)
>>> t1[:3] # 显示前三条数据
[1398902400000000000L, 1398906000000000000L, 1398909600000000000L]
>>> t2 = [t.value//10**9 for t in data.time] # 提取整列(秒级)
>>> t2[:3] # 显示前三条数据
[1398902400L, 1398906000L, 1398909600L]
>>> t1 = pd.DatetimeIndex(t1) # 从list列表转换为pandas的DatetimeIndex格式
>>> t1[:3] # 显示前三条数据
DatetimeIndex(['2014-05-01 00:00:00', '2014-05-01 01:00:00',
'2014-05-01 02:00:00'],
dtype='datetime64[ns]', freq=None)
>>> type(t1[0]) # 每条数据为Timestamp格式
<class 'pandas.tslib.Timestamp'>
>>> t1[0].value
1398902400000000000L
来源:https://blog.csdn.net/CCSUXWZ/article/details/111303823