Python按天实现生成时间范围序列的方法详解

作者:ponponon 时间:2022-12-31 13:48:45 

有的时候我们希望生成一段时间返回,比如从 2022-01-01 00:00:00 后面的 10 天,这么 10 个 datetime 对象,但是我们又不想自己去计算哪些月有30天哪些月有31天。

使用 timedelta

datetime 中包含了 timedelta ,可以用来实现这个功能

from datetime import datetime, timedelta, timezone
from pydantic.datetime_parse import parse_datetime
from loguru import logger

SECOND: int = 1
MINUTE: int = SECOND*60
HOUR: int = MINUTE*60
DAY: int = HOUR*24
WEEK: int = DAY*7
MONTH: int = DAY*30

def get_utc_now_timestamp(with_tzinfo: bool = True) -> datetime:
   """ https://blog.csdn.net/ball4022/article/details/101670024 """
   if not with_tzinfo:
       return datetime.utcnow()
   return datetime.utcnow().replace(tzinfo=timezone.utc)

def timedelta_seconds(start_time: datetime, end_time: datetime = None) -> int:
   """ 返回两个时间相差的秒数 """
   if not end_time:
       end_time = get_utc_now_timestamp()

return int((end_time - start_time).total_seconds())

def custom_timestamp(base_timestamp: datetime, seconds: int, reduce=False):
   return base_timestamp + timedelta(seconds=seconds) \
       if not reduce \
       else base_timestamp - timedelta(seconds=seconds)

start_datetime = parse_datetime('2022-02-27 00:00:00')
data = [
   dt
   for dt in [
       custom_timestamp(start_datetime, DAY*i) for i in range(10)
   ]
]
logger.debug(data)

输出如下:

╰─➤  python -u "/Users/ponponon/Desktop/code/me/ideaboom/main.py"
2022-11-15 15:18:37.653 | DEBUG    | __main__:<module>:67 - [datetime.datetime(2022, 2, 27, 0, 0), datetime.datetime(2022, 2, 28, 0, 0), datetime.datetime(2022, 3, 1, 0, 0), datetime.datetime(2022, 3, 2, 0, 0), datetime.datetime(2022, 3, 3, 0, 0), datetime.datetime(2022, 3, 4, 0, 0), datetime.datetime(2022, 3, 5, 0, 0), datetime.datetime(2022, 3, 6, 0, 0), datetime.datetime(2022, 3, 7, 0, 0), datetime.datetime(2022, 3, 8, 0, 0)]

使用 arrow 这个第三方库

import arrow
from loguru import logger
from pydantic.datetime_parse import parse_datetime

for crawl_date in arrow.Arrow.range('day', parse_datetime('2022-02-27 00:00:00'), parse_datetime('2022-03-10 00:00:00')):
   logger.debug(crawl_date.datetime)

输出如下:

╰─➤  python -u "/Users/ponponon/Desktop/code/me/ideaboom/datetime_arrow_range.py"
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-02-27 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-02-28 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-01 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-02 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-03 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-04 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-05 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-06 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-07 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-08 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-09 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG    | __main__:<module>:6 - 2022-03-10 00:00:00+00:00

补充

当然,Python还有很多生成不同要求的时间序列的方法,下面小编为大家整理了一些,希望对大家有所帮助

生成不同间隔的时间序列

import pandas as pd
import numpy as np
import datetime as dt

# 从2022-07-01开始,间隔3天,生成10条 时间数据
rng = pd.date_range('2022-07-01', periods = 10, freq = '3D')
print(rng)
print("#####################")

# 指定开始时间,结束时间  以及频率
data=pd.date_range('2022-01-01','2023-01-01',freq='M')
print(data)
print("#####################")

# 从2022-01-01开始,间隔1天,生成20条 时间数据
time=pd.Series(np.random.randn(20),
          index=pd.date_range(dt.datetime(2022,1,1),periods=20))
print(time)
print("#####################")

# 不规则的时间间隔
p1 = pd.period_range('2022-01-01 10:10', freq = '25H', periods = 10)
print(p1)
print("######################################")

# 指定索引
rng = pd.date_range('2022 Jul 1', periods = 10, freq = 'D')
print(pd.Series(range(len(rng)), index = rng))
print("######################################")

测试记录:

DatetimeIndex(['2022-07-01', '2022-07-04', '2022-07-07', '2022-07-10',
               '2022-07-13', '2022-07-16', '2022-07-19', '2022-07-22',
               '2022-07-25', '2022-07-28'],
              dtype='datetime64[ns]', freq='3D')
#####################
DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
               '2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
               '2022-09-30', '2022-10-31', '2022-11-30', '2022-12-31'],
              dtype='datetime64[ns]', freq='M')
#####################
2022-01-01   -0.957412
2022-01-02   -0.333720
2022-01-03    1.079960
2022-01-04    0.050675
2022-01-05    0.270313
2022-01-06   -0.222715
2022-01-07   -0.560258
2022-01-08    1.009430
2022-01-09   -0.678157
2022-01-10    0.213557
2022-01-11   -0.720791
2022-01-12    0.332096
2022-01-13   -0.986449
2022-01-14   -0.357303
2022-01-15   -0.559618
2022-01-16    0.480281
2022-01-17   -0.443998
2022-01-18    1.541631
2022-01-19   -0.094559
2022-01-20    1.875012
Freq: D, dtype: float64
#####################
PeriodIndex(['2022-01-01 10:00', '2022-01-02 11:00', '2022-01-03 12:00',
             '2022-01-04 13:00', '2022-01-05 14:00', '2022-01-06 15:00',
             '2022-01-07 16:00', '2022-01-08 17:00', '2022-01-09 18:00',
             '2022-01-10 19:00'],
            dtype='period[25H]', freq='25H')
######################################
2022-07-01    0
2022-07-02    1
2022-07-03    2
2022-07-04    3
2022-07-05    4
2022-07-06    5
2022-07-07    6
2022-07-08    7
2022-07-09    8
2022-07-10    9
Freq: D, dtype: int64
######################################

截断时间段

import pandas as pd
import numpy as np
import datetime as dt

# 从2022-01-01开始,间隔1天,生成20条 时间数据
time=pd.Series(np.random.randn(20),
          index=pd.date_range(dt.datetime(2022,1,1),periods=20))
print(time)
print("#####################")

# 只输出2022-01-10 之后的数据
print(time.truncate(before='2022-1-10'))
print("#####################")

# 只输出2022-01-10 之后的数据
print(time.truncate(after='2022-1-10'))
print("#####################")

# 输出区间段
print(time['2022-01-15':'2022-01-20'])
print("#####################")

测试记录:

2022-01-01   -0.203552
2022-01-02   -1.035483
2022-01-03    0.252587
2022-01-04   -1.046993
2022-01-05    0.152435
2022-01-06   -0.534518
2022-01-07    0.770170
2022-01-08   -0.038129
2022-01-09    0.531485
2022-01-10    0.499937
2022-01-11    0.815295
2022-01-12    2.315740
2022-01-13   -0.443379
2022-01-14   -0.689247
2022-01-15    0.667250
2022-01-16   -2.067246
2022-01-17   -0.105151
2022-01-18   -0.420562
2022-01-19    1.012943
2022-01-20    0.509710
Freq: D, dtype: float64
#####################
2022-01-10    0.499937
2022-01-11    0.815295
2022-01-12    2.315740
2022-01-13   -0.443379
2022-01-14   -0.689247
2022-01-15    0.667250
2022-01-16   -2.067246
2022-01-17   -0.105151
2022-01-18   -0.420562
2022-01-19    1.012943
2022-01-20    0.509710
Freq: D, dtype: float64
#####################
2022-01-01   -0.203552
2022-01-02   -1.035483
2022-01-03    0.252587
2022-01-04   -1.046993
2022-01-05    0.152435
2022-01-06   -0.534518
2022-01-07    0.770170
2022-01-08   -0.038129
2022-01-09    0.531485
2022-01-10    0.499937
Freq: D, dtype: float64
#####################
2022-01-15    0.667250
2022-01-16   -2.067246
2022-01-17   -0.105151
2022-01-18   -0.420562
2022-01-19    1.012943
2022-01-20    0.509710
Freq: D, dtype: float64
#####################

来源:https://segmentfault.com/a/1190000042816011

标签:Python,时间,序列
0
投稿

猜你喜欢

  • 利用Python代码实现模拟动态指针时钟

    2023-12-26 14:07:50
  • 分享一些可视信息设计资源

    2009-10-06 15:19:00
  • MySQL中两种快速创建空表的方式的区别

    2008-12-17 14:34:00
  • Vue3中的setup语法糖、computed函数、watch函数详解

    2024-04-29 13:09:33
  • jupyter 中文乱码设置编码格式 避免控制台输出的解决

    2023-04-27 08:01:13
  • MySQL之where使用详解

    2024-01-16 11:11:08
  • python 包实现 urllib 网络请求操作

    2023-11-03 07:19:50
  • 详解php中curl返回false的解决办法

    2023-10-01 05:53:22
  • 分享2个方便调试Python代码的实用工具

    2021-08-26 18:50:08
  • Golang中的panic之避免和处理程序中的异常情况

    2024-02-20 10:22:49
  • 如何给 legend 标签设定宽度

    2008-07-26 12:18:00
  • python把一个字符串切开的实例方法

    2022-07-10 21:52:17
  • 十个免费的web前端开发工具详细整理

    2023-08-12 17:01:22
  • Python创建xml的方法

    2021-11-25 05:59:44
  • Python数据分析之绘制ppi-cpi剪刀差图形

    2023-01-10 09:57:03
  • ASP中利用正则表达式实现论坛UBB代码转换

    2008-02-29 11:49:00
  • python实现自动化之文件合并

    2023-12-27 07:11:37
  • 三种数据库利用SQL语句进行高效果分页

    2008-11-28 14:52:00
  • gem install mysql报错checking for mysql_qu

    2010-11-11 12:13:00
  • 30行Python代码打造一款简单的人工语音对话

    2023-03-16 18:10:19
  • asp之家 网络编程 m.aspxhome.com