Pandas 稀疏数据结构的实现
作者:程序那些事 时间:2022-01-29 15:08:32
目录
简介
Spare data的例子
SparseArray
SparseDtype
Sparse的属性
Sparse的计算
SparseSeries 和 SparseDataFrame
简介
如果数据中有很多NaN的值,存储起来就会浪费空间。为了解决这个问题,Pandas引入了一种叫做Sparse data的结构,来有效的存储这些NaN的值。
Spare data的例子
我们创建一个数组,然后将其大部分数据设置为NaN,接着使用这个数组来创建SparseArray:
In [1]: arr = np.random.randn(10)
In [2]: arr[2:-2] = np.nan
In [3]: ts = pd.Series(pd.arrays.SparseArray(arr))
In [4]: ts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: Sparse[float64, nan]
这里的dtype类型是Sparse[float64, nan],它的意思是数组中的nan实际上并没有存储,只有非nan的数据才被存储,并且这些数据的类型是float64.
SparseArray
arrays.SparseArray 是一个 ExtensionArray ,用来存储稀疏的数组类型。
In [13]: arr = np.random.randn(10)
In [14]: arr[2:5] = np.nan
In [15]: arr[7:8] = np.nan
In [16]: sparr = pd.arrays.SparseArray(arr)
In [17]: sparr
Out[17]:
[-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)
使用 numpy.asarray() 可以将其转换为普通的数组:
In [18]: np.asarray(sparr)
Out[18]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.3342])
SparseDtype
SparseDtype 表示的是Spare类型。它包含两种信息,第一种是非NaN值的数据类型,第二种是填充时候的常量值,比如nan:
In [19]: sparr.dtype
Out[19]: Sparse[float64, nan]
可以像下面这样构造一个SparseDtype:
In [20]: pd.SparseDtype(np.dtype('datetime64[ns]'))
Out[20]: Sparse[datetime64[ns], NaT]
可以指定填充的值:
In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'),
....: fill_value=pd.Timestamp('2017-01-01'))
....:
Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')]
Sparse的属性
可以通过 .sparse 来访问sparse:
In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")
In [24]: s.sparse.density
Out[24]: 0.5
In [25]: s.sparse.fill_value
Out[25]: 0
Sparse的计算
np的计算函数可以直接用在SparseArray中,并且会返回一个SparseArray。
In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan])
In [27]: np.abs(arr)
Out[27]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)
SparseSeries 和 SparseDataFrame
SparseSeries 和 SparseDataFrame在1.0.0 的版本时候被删除了。取代他们的是功能更强的SparseArray。
看下两者的使用上的区别:
# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})
# New way
In [31]: pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
Out[31]:
A
0 0
1 1
如果是SciPy 中的sparse 矩阵,那么可以使用 DataFrame.sparse.from_spmatrix() :
# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])
# New way
In [32]: from scipy import sparse
In [33]: mat = sparse.eye(3)
In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C'])
In [35]: df.dtypes
Out[35]:
A Sparse[float64, 0]
B Sparse[float64, 0]
C Sparse[float64, 0]
dtype: object
来源:https://juejin.cn/post/6986815116905807879


猜你喜欢
Python中eval()函数的详细使用教程

python开发简易版在线音乐播放器
解决django同步数据库的时候app models表没有成功创建的问题
Python中的异常处理讲解

基于pycharm 项目和项目文件命名规则的介绍

Pandas DataFrame操作数据增删查改
python交互式图形编程实例(三)
Python中typing模块与类型注解的使用方法
python光学仿真学习wxpython创建手速测试程序

PyTorch中常用的激活函数的方法示例

在pandas中遍历DataFrame行的实现方法

golang 中 channel 的详细使用、使用注意事项及死锁问题解析
python中while循环语句用法简单实例
python的函数最详解
python进程管理工具supervisor使用实例

Python 调用 C++ 传递numpy 数据详情
Python脚本导出为exe程序的方法

微信小程序开发之数据存储 参数传递 数据缓存

python3 下载网络图片代码实例
Ubuntu权限不足无法创建文件夹解决方案
