tensorflow下的图片标准化函数per_image_standardization用法

作者:仙界天堂 时间:2022-10-10 13:54:06 

实验环境:windows 7,anaconda 3(Python 3.5),tensorflow(gpu/cpu)

函数介绍:标准化处理可以使得不同的特征具有相同的尺度(Scale)。

这样,在使用梯度下降法学习参数的时候,不同特征对参数的影响程度就一样了。

tf.image.per_image_standardization(image),此函数的运算过程是将整幅图片标准化(不是归一化),加速神经网络的训练。

主要有如下操作,(x - mean) / adjusted_stddev,其中x为图片的RGB三通道像素值,mean分别为三通道像素的均值,adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))。

stddev为三通道像素的标准差,image.NumElements()计算的是三通道各自的像素个数。

实验代码:


import tensorflow as tf
import matplotlib.image as img
import matplotlib.pyplot as plt
import numpy as np
sess = tf.InteractiveSession()
image = img.imread('D:/Documents/Pictures/logo7.jpg')
shape = tf.shape(image).eval()
h,w = shape[0],shape[1]
standardization_image = tf.image.per_image_standardization(image)#标准化

fig = plt.figure()
fig1 = plt.figure()
ax = fig.add_subplot(111)
ax.set_title('orginal image')
ax.imshow(image)
ax1 = fig1.add_subplot(311)
ax1.set_title('original hist')
ax1.hist(sess.run(tf.reshape(image,[h*w,-1])))
ax1 = fig1.add_subplot(313)
ax1.set_title('standardization hist')
ax1.hist(sess.run(tf.reshape(standardization_image,[h*w,-1])))
plt.ion()
plt.show()

实验结果:

两幅hist图分别是原图和标准化后的RGB的像素值分布图,可以看到只是将图片的像素值大小限定到一个范围,但是像素值的分布为改变。

tensorflow下的图片标准化函数per_image_standardization用法

补充知识:tensorflow运行单张图像与加载模型时注意的问题

关于模型的保存加载:

在做实验的情况下,一般使用save函数与restore函数就足够用,该刚发只加载模型的参数而不加载模型,这意味着

当前的程序要能找到模型的结构


saver = tf.train.Saver()#声明saver用来保存模型
with tf.Session() as sess:
for i in range(train_step):
#.....训练操作
if i%100 == 0 && i!= 0:#每间隔训练100次存储一个模型,默认最多能存5个,如果超过5个先将序号小的覆盖掉
 saver.save(sess,str(i)+"_"+'model.ckpt',global_step=i)

得到的文件如下:

在一个文件夹中,会有一个checkpoint文件,以及一系列不同训练阶段的模型文件,如下图

tensorflow下的图片标准化函数per_image_standardization用法

ckeckpoint文件可以放在编辑器里面打开看,里面记录的是每个阶段保存模型的信息,同时也是记录最近训练的检查点

ckpt文件是模型参数,index文件一般用不到(我也查到是啥-_-|||)

在读取模型时,声明一个saver调用restore函数即可,我看很多博客里面写的都是添加最近检查点的模型,这样添加的模型都是最后一次训练的结果,想要加载固定的模型,直接把模型参数名称的字符串写到参数里就行了,如下段程序


saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "step_1497batch_64model.ckpt-1497")#加载对应的参数

这样就把参数加载到Session当中,如果有数据,就可以直接塞进来进行计算了

运行单张图片:

运行单张图像的方法的流程大致如下,首先使用opencv或者Image或者使用numpy将图像读进来,保存成numpy的array的格式

接下来可以对图像使用opencv进行预处理。然后将处理后的array使用feed_dict的方式输入到tensorflow的placeholder中,这里注意两点,不要单独的使用下面的方法将tensor转换成numpy再进行处理,除非是想查看一下图像输出,否则在验证阶段,强烈不要求这样做,尽量使用feed_dict,原因后面说明

numpy_img = sess.run(tensor_img)#将tensor转换成numpy

这里注意一点,如果你的图像是1通道的图像,即灰度图,那么你得到的numpy是一个二维矩阵,将使用opencv读入的图像输出shape会得到如(424,512)这样的形状,分别表示行和列,但是在模型当中通常要要有batch和通道数,所以需要将图像使用python opencv库中的reshape函数转换成四维的矩阵,如

cv_img = cv_img.reshape(1,cv_img.shape[0],cv_img.shape[1],1)#cv_img是使用Opencv读进来的图片

用来输入到网络中的placeholder设置为如下,即可进行输入了

img_raw = tf.placeholder(dtype=tf.float32, shape=[1,512, 424, 1], name='input')

测试:

如果使用的是自己的数据集,通常是制作成tfrecords,在训练和测试的过程中,需要读取tfrecords文件,这里注意,千万不要把读取tfrecords文件的函数放到循环当中,而是把这个文件放到外面,否则你训练或者测试的数据都是同一批,Loss会固定在一个值!

这是因为tfrecords在读取的过程中是将图像信息加入到一个队列中进行读取,不要当成普通的函数调用,要按照tensorflow的思路,将它看成一个节点!


def read_data(tfrecords_file, batch_size, image_size):#读取tfrecords文件
filename_queue = tf.train.string_input_producer([tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)

img_features = tf.parse_single_example(
 serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
 })
image = tf.decode_raw(img_features['image_raw'], tf.float32)
min_after_dequeue = 1000
image = tf.reshape(image, [image_size, image_size,1])
image = tf.image.resize_images(image, (32,32),method=3)#缩放成32×32
image = tf.image.per_image_standardization(image)#图像标准化
label = tf.cast(img_features['label'], tf.int32)  
capacity = min_after_dequeue + 3 * batch_size  
image_batch, label_batch = tf.train.shuffle_batch([image, label],
      min_after_dequeue = min_after_dequeue)
return image_batch, tf.one_hot(label_batch,6)#返回的标签经过one_hot编码

#将得到的图像数据与标签都是tensor哦,不能输出的!
read_image_batch,read_label_batch = read_data('train_data\\tfrecord\\TrainC6_95972.tfrecords',batch_size,120)

回到在运行单张图片的那个问题,直接对某个tensor进行sess.run()会得到图计算后的类型,也就是咱们python中常见的类型。

使用sess.run(feed_dict={…})得到的计算结果和直接使用sess.run有什么不同呢?

可以使用一个循环实验一下,在循环中不停的调用sess.run()相当于每次都向图中添加节点,而使用sess.run(feed_dict={})是向图中开始的位置添加数据!

结果会发现,直接使用sess.run()的运行会越来越慢,使用sess.run(feed_dict={})会运行的飞快!

为什么要提这个呢?

在上面的read_data中有这么三行函数


image = tf.reshape(image, [image_size, image_size,1])#与opencv的reshape结果一样
image = tf.image.resize_images(image, (32,32),method=3)#缩放成32×32,与opencv的resize结果一样,插值方法要选择三次立方插值
image = tf.image.per_image_standardization(image)#图像标准化

如果想要在将训练好的模型作为网络节点添加到系统中,得到的数据必须是经过与训练数据经过相同处理的图像,也就是必须要对原始图像经过上面的处理。如果使用其他的库容易造成结果对不上,最好使用与训练数据处理时相同的函数。

如果使用将上面的函数当成普通的函数使用,得到的是一个tensor,没有办法进行其他的图像预处理,需要先将tensor变成numpy类型,问题来了,想要变成numpy类型,就得调用sess.run(),如果模型作为接口死循环,那么就会一直使用sess.run,效率会越来越慢,最后卡死!

原因在于你没有将tensorflow中的函数当成节点调用,而是将其当成普通的函数调用了!

解决办法就是按部就班的来,将得到的numpy数据先提前处理好,然后使用sess.run(feed_dict)输入到placeholder中,按照图的顺序一步一步运行即可!

如下面程序


with tf.name_scope('inputs'):
img_raw = tf.placeholder(dtype=tf.float32, shape=[1,120, 120, 1], name='input')#输入数据
keep_prob = tf.placeholder(tf.float32,name='keep_prob')

with tf.name_scope('preprocess'):#图中的预处理函数,当成节点顺序调用
img_120 = tf.reshape(img_raw, [120, 120,1])
img_norm = tf.cast(img_120, "float32") / 256
img_32 = tf.image.resize_images(img_norm, (32,32),method=3)
img_std = tf.image.per_image_standardization(img_32)
img = tf.reshape(img_std, [1,32, 32,1])

with tf.name_scope('output'):#图像塞到网络中
output = MyNet(img,keep_prob,n_cls)

ans = tf.argmax(tf.nn.softmax(output),1)#计算模型得到的结果

init = tf.global_variables_initializer()

saver = tf.train.Saver()

if __name__ == '__main__':

with tf.Session() as sess:

sess.run(init)
saver.restore(sess, "step_1497batch_64model.ckpt-1497")#效果更好
index = 0
path = "buffer\\"

while True:
 f = path + str(index)+'.jpg'#从0.jpg、1.jpg、2.jpg.....一直读
 if os.path.exists(f):
 cv_img = cv.imread(f,0)
 cv_img = OneImgPrepro(cv_img)
 cv_img = cv_img.reshape(1,cv_img.shape[0],cv_img.shape[1],1)#需要reshape成placeholder可接收型
 clas = ans.eval(feed_dict={img_raw:cv_img,keep_prob:1})#feed的速度快!

print(clas)#输出分类

index += 1

来源:https://blog.csdn.net/sinat_21585785/article/details/74251563

标签:tensorflow,图片,标准化
0
投稿

猜你喜欢

  • Http与https对比详细介绍

    2022-09-10 05:01:38
  • Python合并字典键值并去除重复元素的实例

    2022-02-10 17:48:40
  • deepin20.1系统安装MySQL8.0.23(超详细的MySQL8安装教程)

    2024-01-25 14:26:21
  • 正则 global 属性介绍

    2008-03-18 20:50:00
  • SQL分组排序去重复的小实例

    2024-01-19 15:30:46
  • torch.utils.data.DataLoader与迭代器转换操作

    2021-01-18 11:02:34
  • ASP实现表单中容量大的数据的提交方法

    2008-10-16 11:07:00
  • 深入了解Python的多线程基础

    2021-12-07 18:50:50
  • 手写一个python迭代器过程详解

    2021-06-29 07:45:23
  • Python完全新手教程

    2021-08-19 18:38:06
  • pytorch中的卷积和池化计算方式详解

    2021-03-31 19:26:32
  • python中class(object)的含义是什么以及用法

    2023-08-07 22:00:19
  • python3操作微信itchat实现发送图片

    2022-03-26 11:42:52
  • Sql Server中清空所有数据表中的记录

    2024-01-15 00:10:26
  • JavaScript基于Ajax实现不刷新在网页上动态显示文件内容

    2024-05-06 10:08:38
  • Pytorch加载数据集的方式总结及补充

    2023-02-15 17:14:37
  • Python实现并行抓取整站40万条房价数据(可更换抓取城市)

    2021-09-24 10:56:43
  • vue项目实现图片懒加载的简单步骤

    2024-05-10 14:16:06
  • Flask框架中request、请求钩子、上下文用法分析

    2022-04-17 23:05:08
  • Python从数据库读取大量数据批量写入文件的方法

    2024-01-27 14:48:10
  • asp之家 网络编程 m.aspxhome.com