python并发编程多进程 模拟抢票实现过程
作者:minger_lcm 时间:2022-03-07 11:53:05
抢票是并发执行
多个进程可以访问同一个文件
多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务
db.txt
{"count": 1}
并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人
#文件db.txt的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process
import time
import json
class Foo(object):
def search(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
def get(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟
with open("db.txt", "w") as f_write:
json.dump(dic, f_write)
print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"])
else:
print("没票了,抢光了")
def task(self, name):
self.search(name)
self.get(name)
if __name__ == "__main__":
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i,))
p.start()
总结:程序出现数据写入错乱
大家都查到票为1,都购票成功
<路人1>用户 查看剩余票数为 [1]
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人1> 购票成功
剩余票数为 [0]
<路人2> 购票成功
剩余票数为 [0]
<路人3> 购票成功
剩余票数为 [0]
<路人4> 购票成功
剩余票数为 [0]
<路人5> 购票成功
剩余票数为 [0]
<路人6> 购票成功
剩余票数为 [0]
<路人7> 购票成功
剩余票数为 [0]
<路人8> 购票成功
剩余票数为 [0]
<路人9> 购票成功
剩余票数为 [0]
<路人10> 购票成功
剩余票数为 [0]
总结程序出现数据写入错乱
加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全
购票功能不应该并发执行,查票应该是并发执行的
查票准不准确不重要,有可能这张票就被别人买走
一个人写完以后,让另外一个人基于上一个人写的结果,再做购票操作
#把文件db.txt的内容重置为:{"count":1}
from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
def search(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
def get(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟
with open("db.txt", "w") as f_write:
json.dump(dic, f_write)
print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"])
else:
print("没票了,抢光了")
def task(self, name, mutex):
self.search(name)
mutex.acquire()
self.get(name)
mutex.release()
if __name__ == "__main__":
mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
执行结果
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人1>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人2> 购票成功
剩余票数为 [0]
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
with lock
相当于lock.acquire(),执行完自代码块自动执行lock.release()
from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
def search(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
def get(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟
with open("db.txt", "w") as f_write:
json.dump(dic, f_write)
print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"])
else:
print("没票了,抢光了")
def task(self, name, mutex):
self.search(name)
with mutex: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
self.get(name)
if __name__ == "__main__":
mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
来源:https://www.cnblogs.com/mingerlcm/p/8998591.html
标签:python,并发,编程,多,进程,模拟,抢票


猜你喜欢
让我们走进ASP.NET世界
2007-08-24 08:52:00
axios发送post请求springMVC接收不到参数的解决方法
2023-07-02 16:59:05
js中bool值的转换及“&&”、“||”、 “!!”详解
2024-04-19 10:02:01
python线程信号量semaphore使用解析
2023-02-08 08:47:24
解决vue单页面多个组件嵌套监听浏览器窗口变化问题
2024-04-27 15:48:29

Python利用tkinter实现一个简易番茄钟的示例代码
2021-03-02 17:20:59

解决Alexnet训练模型在每个epoch中准确率和loss都会一升一降问题
2022-12-06 16:17:37

用python监控服务器的cpu,磁盘空间,内存,超过邮件报警
2023-04-22 07:13:38
mysql myisam优化设置
2010-03-13 16:59:00
asp HTTP 500错误 常见问题分析
2011-04-07 10:33:00
在Django的View中使用asyncio的方法
2022-04-10 13:16:41
python实现的系统实用log类实例
2022-08-02 18:50:57
解析MySQL的information_schema数据库
2024-01-15 15:05:59
详解python单例模式与metaclass
2021-03-20 23:43:56
python发腾讯微博代码分享
2022-05-27 04:45:00
js比较日期大小的方法
2024-04-10 10:49:45
python 输入字符串生成所有有效的IP地址(LeetCode 93号题)
2022-09-06 00:16:57
解决Vue不能检测数组或对象变动的问题
2024-04-27 15:59:40
Python3+OpenCV实现简单交通标志识别流程分析
2021-03-12 06:37:41

python3.6.3安装图文教程 TensorFlow安装配置方法
2021-06-25 19:20:42
