使用TensorFlow实现简单线性回归模型
作者:王勇21633012 时间:2022-11-30 19:51:48
本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下
线性拟合y=2.7x+0.6,代码如下:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
n = 201 # x点数
X = np.linspace(-1, 1, n)[:,np.newaxis] # 等差数列构建X,[:,np.newaxis]这个是shape,这一行构建了一个n维列向量([1,n]的矩阵)
noise = np.random.normal(0, 0.5, X.shape) # 噪声值,与X同型
Y = X*2.7 + 0.6 + noise # Y
xs = tf.placeholder(tf.float32, [None, 1]) # 下面两行是占位符tf.placeholder(dtype, shape)
ys = tf.placeholder(tf.float32, [None, 1])
w = tf.Variable(1.1) # 这两行是weight变量,bias变量,括号中是初始值
b = tf.Variable(0.2)
ypredict = tf.add(w*xs,b) # 根据 w, b 产生的预测值
loss = tf.reduce_sum(tf.pow(ys-ypredict,2.0))/n # 损失函数,tf.reduce_sum()按某一维度元素求和,默认为按列
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 梯度下降优化器,0.01学习率,最小化losss
init = tf.global_variables_initializer() # 初始化所有变量
with tf.Session() as sess:
sess.run(init) # 运行初始化
for i in range (1000): # 迭代1000次
sess.run(optimizer, feed_dict = {xs:X,ys:Y}) # 运行优化器,梯度下降用到loss,计算loss需要xs, ys所以后面需要feed_dict
if i%50==0: # 每隔50次迭代输出w,b,loss
# 下面sess.run(w),sess.run(b)里面没有feed_dict是因为打印w,b不需要xs,ys,而打印loss需要
print ("w:",sess.run(w),"\t b:", sess.run(b), "\t loss:", sess.run(loss,feed_dict={xs:X,ys:Y}))
plt.plot(X,X*sess.run(w)+sess.run(b)) # 运行迭代之后绘制拟合曲线,这需要在sess里面运行是因为要用到w,b
plt.scatter(X,Y) # 绘制被拟合数据(散点)
plt.show() # 绘制图像
结果:
w: 1.1106868 b: 0.2086223 loss: 1.2682248
w: 1.5626049 b: 0.4772562 loss: 0.7024503
w: 1.8849733 b: 0.57508457 loss: 0.47280872
w: 2.1149294 b: 0.61071056 loss: 0.36368176
w: 2.278966 b: 0.6236845 loss: 0.30917725
w: 2.3959787 b: 0.6284093 loss: 0.2815788
w: 2.4794474 b: 0.6301298 loss: 0.26755357
w: 2.5389886 b: 0.63075644 loss: 0.26041925
w: 2.5814607 b: 0.6309848 loss: 0.2567894
w: 2.611758 b: 0.6310678 loss: 0.25494233
w: 2.6333694 b: 0.6310981 loss: 0.25400248
w: 2.6487865 b: 0.631109 loss: 0.2535242
w: 2.659784 b: 0.63111293 loss: 0.25328085
w: 2.6676288 b: 0.6311139 loss: 0.25315702
w: 2.6732242 b: 0.6311139 loss: 0.25309405
w: 2.6772156 b: 0.6311139 loss: 0.25306198
w: 2.6800632 b: 0.6311139 loss: 0.25304565
w: 2.6820953 b: 0.6311139 loss: 0.25303733
w: 2.6835444 b: 0.6311139 loss: 0.25303313
w: 2.684578 b: 0.6311139 loss: 0.25303096
来源:https://blog.csdn.net/weixin_38275649/article/details/80233579
标签:TensorFlow,线性回归
0
投稿
猜你喜欢
Python标准库之日期、时间和日历模块
2021-04-11 17:05:14
详解Python odoo中嵌入html简单的分页功能
2021-05-21 12:24:06
一篇文章教会你PYcharm的用法
2023-06-30 14:18:56
JS截取与分割字符串常用技巧总结
2024-02-26 13:48:45
python实战练习做一个随机点名的程序
2022-06-16 07:42:31
Python OpenCV中的numpy与图像类型转换操作
2023-11-17 09:24:20
MySQL数据库8——数据库中函数的应用详解
2024-01-23 18:18:07
详解JS中的compose函数和pipe函数用法
2024-04-18 10:59:25
使用python将微信image下.dat文件解密为.png的方法
2022-11-12 06:39:38
Git的撤销、修改和回退命令
2022-12-05 14:10:12
python打印9宫格、25宫格等奇数格 满足横竖斜相加和相等
2023-08-27 07:55:11
在Python函数中输入任意数量参数的实例
2022-07-09 04:58:08
Golang操作Kafka的实现示例
2024-05-22 10:18:48
Python写一个简单的在线编辑器
2022-07-26 22:49:17
W3C 接连推出 7 个 HTML 草案
2010-03-10 10:37:00
VUE3中watch监听使用实例详解
2024-05-29 22:42:16
C#访问SQL Server数据库的实现方法
2024-01-14 17:14:23
Python利用Redis计算经纬度距离案例
2021-03-05 04:51:35
Python学习之包与模块详解
2021-05-26 03:40:07
python中判断文件结束符的具体方法
2021-09-28 13:31:53