对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

作者:孤独的猿行客 时间:2022-07-17 02:28:27 

在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律。

1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解:

Computes a 1-D convolution given 3-D input and filter tensors.

Given an input tensor of shape [batch, in_width, in_channels] if data_format is "NHWC", or [batch, in_channels, in_width] if data_format is "NCHW", and a filter / kernel tensor of shape [filter_width, in_channels, out_channels], this op reshapes the arguments to pass them to conv2d to perform the equivalent convolution operation.

Internally, this op reshapes the input tensors and invokes `tf.nn.conv2d`. For example, if `data_format` does not start with "NC", a tensor of shape [batch, in_width, in_channels] is reshaped to [batch, 1, in_width, in_channels], and the filter is reshaped to [1, filter_width, in_channels, out_channels]. The result is then reshaped back to [batch, out_width, out_channels] whereoutwidthisafunctionofthestrideandpaddingasinconv2dwhereoutwidthisafunctionofthestrideandpaddingasinconv2d and returned to the caller.

Args: value: A 3D `Tensor`. Must be of type `float32` or `float64`. filters: A 3D `Tensor`. Must have the same type as `input`. stride: An `integer`. The number of entries by which the filter is moved right at each step. padding: 'SAME' or 'VALID' use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. data_format: An optional `string` from `"NHWC", "NCHW"`. Defaults to `"NHWC"`, the data is stored in the order of [batch, in_width, in_channels]. The `"NCHW"` format stores data as [batch, in_channels, in_width]. name: A name for the operation (optional).

Returns:

A `Tensor`. Has the same type as input.

Raises:

ValueError: if `data_format` is invalid.

什么意思呢?就是说conv1d的参数含义:(以NHWC格式为例,即,通道维在最后)

1、value:在注释中,value的格式为:[batch, in_width, in_channels],batch为样本维,表示多少个样本,in_width为宽度维,表示样本的宽度,in_channels维通道维,表示样本有多少个通道。 事实上,也可以把格式看作如下:[batch, 行数, 列数],把每一个样本看作一个平铺开的二维数组。这样的话可以方便理解。

2、filters:在注释中,filters的格式为:[filter_width, in_channels, out_channels]。按照value的第二种看法,filter_width可以看作每次与value进行卷积的行数,in_channels表示value一共有多少列(与value中的in_channels相对应)。out_channels表示输出通道,可以理解为一共有多少个卷积核,即卷积核的数目。

3、stride:一个整数,表示步长,每次(向下)移动的距离(TensorFlow中解释是向右移动的距离,这里可以看作向下移动的距离)。

4、padding:同conv2d,value是否需要在下方填补0。

5、name:名称。可省略。

首先从参数列表可以看出value指的输入的数据,stride就是卷积的步长,这里我们最有疑问的就是filters这个参数,那么我们对filter进行简单的说明。从上面可以看到filters的格式为:[filter_width, in_channels, out_channels],这是一个数组的维度,对应的是卷积核的大小,输入的channel的格式,和卷积核的个数,下面我们用例子说明问题:


import tensorflow as tf
import numpy as np

if __name__ == '__main__':
 inputs = tf.constant(np.arange(1, 6, dtype=np.float32), shape=[1, 5, 1])
 w = np.array([1, 2], dtype=np.float32).reshape([2, 1, 1])
 # filter width, filter channels and out channels(number of kernels)
 cov1 = tf.nn.conv1d(inputs, w, stride=1, padding='VALID')
 with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   out = sess.run(cov1)
   print(out)

其输出为:


[[[ 5.],
   [ 8.],
   [11.],
   [14.]]]

我们分析一下,输入的数据为[[[1],[2],[3],[4],[5]]],有5个特征,分别对应的数值为1,2,3,4,5,那么经过卷积的结果为5,8,11,14,那么这个结果是怎么来的呢,我们根据卷积的计算,可以得到5 = 1*1 + 2*2, 8=2*1+ 3*2, 11 = 3*1+4*2, 14=4*1+5*2, 也就是W1=1, W2=2,正好和我们先面filters设置的数值相等,


w = np.array([1, 2], dtype=np.float32).reshape([2, 1, 1])

所以可以看到这个filtes设置的是是卷积核矩阵的,换句话说,卷积核矩阵我们是可以设置的。

2. 1.关于tf.layers.conv1d,函数的定义如下


tf.layers.conv1d(

inputs,

filters,

kernel_size,

strides=1,

padding='valid',

data_format='channels_last',

dilation_rate=1,

activation=None,

use_bias=True,

kernel_initializer=None,

bias_initializer=tf.zeros_initializer(),

kernel_regularizer=None,

bias_regularizer=None,

activity_regularizer=None,

kernel_constraint=None,

bias_constraint=None,

trainable=True,

name=None,

reuse=None

)

比较重要的几个参数是inputs, filters, kernel_size,下面分别说明

inputs : 输入tensor, 维度(None, a, b) 是一个三维的tensor

None : 一般是填充样本的个数,batch_size

a : 句子中的词数或者字数

b : 字或者词的向量维度

filters : 过滤器的个数

kernel_size : 卷积核的大小,卷积核其实应该是一个二维的,这里只需要指定一维,是因为卷积核的第二维与输入的词向量维度是一致的,因为对于句子而言,卷积的移动方向只能是沿着词的方向,即只能在列维度移动。一个例子:


import tensorflow as tf
import numpy as np

if __name__ == '__main__':
 inputs = tf.constant(np.arange(1, 6, dtype=np.float32), shape=[1, 5, 1])
 cov2 = tf.layers.conv1d(inputs, filters=1, kernel_size=2, strides=1, padding='VALID')
 with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   out = sess.run(cov2)
   print(out)

输出结果:


[[[-1.9953331]
[-3.5520997]
[-5.108866 ]
[-6.6656327]]]

也许你得到的结果和我得到的结果不同,因为在这个函数里面只是设置了卷积核的尺寸和步长,没有设置具体的卷积核矩阵,所以这个卷积核矩阵是随机生成的,就会出现可能运行上面的程序出现不同结果的情况。

来源:https://blog.csdn.net/u013323018/article/details/90444952

标签:tensorflow,tf.nn.conv1d,layers.conv1d
0
投稿

猜你喜欢

  • python matplotlib绘制三维图的示例

    2023-03-04 16:35:48
  • 如何将sql执行的错误消息记录到本地文件中实现过程

    2024-01-22 06:50:37
  • Python 通过爬虫实现GitHub网页的模拟登录的示例代码

    2022-04-27 00:26:39
  • Python实现问题回答小游戏

    2023-05-13 13:26:19
  • python实现多人聊天室

    2022-09-02 18:56:21
  • 移动网站开发:标记语言

    2010-06-08 13:42:00
  • Zend Framework教程之资源(Resources)用法实例详解

    2023-11-06 02:49:50
  • 字符集和字符编码(Charset & Encoding)

    2023-08-24 16:37:44
  • SHA256算法 asp源码

    2009-08-28 13:01:00
  • 2个asp防刷新程序代码

    2008-09-28 21:16:00
  • Python中对字典的几个处理方法分享

    2021-03-13 05:48:57
  • 富文本编辑器的基本原理与实践

    2008-06-13 13:28:00
  • Python可变参数会自动填充前面的默认同名参数实例

    2022-05-24 05:00:43
  • Python实现桌面翻译工具【新手必学】

    2021-03-27 08:32:47
  • python3爬虫中引用Queue的实例讲解

    2023-07-15 19:43:48
  • php简单浏览目录内容的实现代码

    2023-10-25 01:32:43
  • Python抓取手机号归属地信息示例代码

    2023-03-02 21:24:59
  • python中append实例用法总结

    2023-10-03 09:46:20
  • Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    2021-07-31 11:03:29
  • 自己用python做的一款超炫酷音乐播放器

    2021-05-26 04:47:35
  • asp之家 网络编程 m.aspxhome.com