Numpy实现卷积神经网络(CNN)的示例
作者:chenxiangzhen 时间:2022-10-06 17:44:17
import numpy as np
import sys
def conv_(img, conv_filter):
filter_size = conv_filter.shape[1]
result = np.zeros((img.shape))
# 循环遍历图像以应用卷积运算
for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):
for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):
# 卷积的区域
curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),
c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]
# 卷积操作
curr_result = curr_region * conv_filter
conv_sum = np.sum(curr_result)
# 将求和保存到特征图中
result[r, c] = conv_sum
# 裁剪结果矩阵的异常值
final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),
np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]
return final_result
def conv(img, conv_filter):
# 检查图像通道的数量是否与过滤器深度匹配
if len(img.shape) > 2 or len(conv_filter.shape) > 3:
if img.shape[-1] != conv_filter.shape[-1]:
print("错误:图像和过滤器中的通道数必须匹配")
sys.exit()
# 检查过滤器是否是方阵
if conv_filter.shape[1] != conv_filter.shape[2]:
print('错误:过滤器必须是方阵')
sys.exit()
# 检查过滤器大小是否是奇数
if conv_filter.shape[1] % 2 == 0:
print('错误:过滤器大小必须是奇数')
sys.exit()
# 定义一个空的特征图,用于保存过滤器与图像的卷积输出
feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,
img.shape[1] - conv_filter.shape[1] + 1,
conv_filter.shape[0]))
# 卷积操作
for filter_num in range(conv_filter.shape[0]):
print("Filter ", filter_num + 1)
curr_filter = conv_filter[filter_num, :]
# 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。
if len(curr_filter.shape) > 2:
conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
for ch_num in range(1, curr_filter.shape[-1]):
conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])
else:
conv_map = conv_(img, curr_filter)
feature_maps[:, :, filter_num] = conv_map
return feature_maps
def pooling(feature_map, size=2, stride=2):
# 定义池化操作的输出
pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
feature_map.shape[-1]))
for map_num in range(feature_map.shape[-1]):
r2 = 0
for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
c2 = 0
for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])
c2 = c2 + 1
r2 = r2 + 1
return pool_out
import skimage.data
import numpy
import matplotlib
import matplotlib.pyplot as plt
import NumPyCNN as numpycnn
# 读取图像
img = skimage.data.chelsea()
# 转成灰度图像
img = skimage.color.rgb2gray(img)
# 初始化卷积核
l1_filter = numpy.zeros((2, 3, 3))
# 检测垂直边缘
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
# 检测水平边缘
l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])
"""
第一个卷积层
"""
# 卷积操作
l1_feature_map = numpycnn.conv(img, l1_filter)
# ReLU
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
# Pooling
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)
"""
第二个卷积层
"""
# 初始化卷积核
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
# 卷积操作
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
# ReLU
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
# Pooling
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)
"""
第三个卷积层
"""
# 初始化卷积核
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
# 卷积操作
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
# ReLU
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
# Pooling
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)
"""
结果可视化
"""
fig0, ax0 = plt.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
plt.savefig("in_img1.png", bbox_inches="tight")
plt.close(fig0)
# 第一层
fig1, ax1 = plt.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1")
ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2")
ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU")
ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU")
ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool")
ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool")
plt.savefig("L1.png", bbox_inches="tight")
plt.close(fig1)
# 第二层
fig2, ax2 = plt.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1")
ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2")
ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3")
ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU")
ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU")
ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU")
ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool")
ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool")
ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool")
plt.savefig("L2.png", bbox_inches="tight")
plt.close(fig2)
# 第三层
fig3, ax3 = plt.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1")
ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU")
ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool")
plt.savefig("L3.png", bbox_inches="tight")
plt.close(fig3)
来源:https://www.cnblogs.com/chenxiangzhen/archive/2004/01/13/10384955.html
标签:Numpy,卷积神经网络,CNN,python
0
投稿
猜你喜欢
MYSQL常用命令与实用技巧
2024-01-22 05:22:25
从零开始学Python第八周:详解网络编程基础(socket)
2023-09-04 05:16:20
Python读取sqlite数据库文件的方法分析
2024-01-21 11:57:15
SQL截取字符串函数分享
2011-11-03 17:07:37
详解JS 比较两个Json对象的值是否相等的实例
2024-04-29 13:35:36
Python线上环境使用日志的及配置文件
2023-11-12 13:23:56
浏览器发送URL的编码特性
2007-10-12 20:51:00
mysql数据库优化总结(心得)
2024-01-17 17:50:37
fso怎样判断一个盘上是否有文件
2007-09-26 12:35:00
uniapp中微信小程序与H5相互跳转以及传参详解(webview)
2024-04-10 16:20:37
使用vue实现HTML页面生成图片的方法
2024-04-27 15:51:47
python检查目录文件权限并修改目录文件权限的操作
2022-06-26 04:13:31
python监控日志中的报错并进行邮件报警
2023-10-14 02:18:30
为ABP框架增加日志组件与依赖注入服务
2024-06-05 15:43:32
ASP + Serv-u 实现FTP的代码
2009-02-02 09:52:00
vue3简单封装input组件和统一表单数据详解
2024-04-26 17:41:18
Python3之乱码\\xe6\\x97\\xa0\\xe6\\xb3\\x95处理方式
2021-03-30 10:19:47
大数据就业的三大方向和最热门十大岗位【推荐】
2023-05-18 16:21:06
python使用ctypes调用扩展模块的实例方法
2021-11-01 22:22:58
W3C优质网页小贴士(三)
2008-04-09 13:32:00