Python语言实现SIFT算法

作者:米开朗琪罗儿 时间:2022-12-30 17:58:14 

本文侧重于如何使用Python语言实现SIFT算法

所有程序已打包:基于OpenCV-Python的SIFT算法的实现

一、什么是SIFT算法

  SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

二、准备工作

2.1 实验设备

  本文在Windows10系统上,使用pycharm软件完成所有实验。

2.2 OpenCV安装

  我们可以使用OpenCV库中的cv2.xfeatures2d.SIFT_create()函数实现SIFT,但由于专利保护,很多版本的OpenCV库已无法提供该函数,目前仅3.4.2.16版本的OpenCV库可使用此函数。

安装教程
  (1)查看当前版本opencv:进入cmd(组合键win+R,输入cmd),输入conda list,查看当前pycharm所有库并找到opencv-python,若找不到库,说明没有安装。
  (2)卸载原版本(在cmd中输入:pip uninstall opencv
  (3)安装新版本(在cmd中输入:pip install opencv-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"
  (4)安装附属库(在cmd中输入:pip install opencv-contrib-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"

三、实验工作

3.1 图像选择

  这里选择经典的lena图像作为实验对象,为了选择一个待匹配图像,本文使用如下代码对lena图像进行逆时针45°旋转。


from PIL import Image

img = Image.open('lena.png')
img2 = img.rotate(45)       # 逆时针旋转45°
img2.save("lena_rot45.png")
img2.show()

参考图像与待匹配图像(即旋转图像)如下图所示:

Python语言实现SIFT算法

3.2 程序实现


"""
图像匹配——SIFT点特征匹配实现步骤:
   (1)读取图像;
   (2)定义sift算子;
   (3)通过sift算子对需要匹配的图像进行特征点获取;
       a.可获取各匹配图像经过sift算子的特征点数目
   (4)可视化特征点(在原图中标记为圆圈);
       a.为方便观察,可将匹配图像横向拼接
   (5)图像匹配(特征点匹配);
       a.通过调整ratio获取需要进行图像匹配的特征点数量(ratio值越大,匹配的线条越密集,但错误匹配点也会增多)
       b.通过索引ratio选择固定的特征点进行图像匹配
   (6)将待匹配图像通过旋转、变换等方式将其与目标图像对齐
"""

import cv2              # opencv版本需为3.4.2.16
import numpy as np      # 矩阵运算库
import time             # 时间库

original_lena = cv2.imread('lena.png')          # 读取lena原图
lena_rot45 = cv2.imread('lena_rot45.png')       # 读取lena旋转45°图

sift = cv2.xfeatures2d.SIFT_create()

# 获取各个图像的特征点及sift特征向量
# 返回值kp包含sift特征的方向、位置、大小等信息;des的shape为(sift_num, 128), sift_num表示图像检测到的sift特征数量
(kp1, des1) = sift.detectAndCompute(original_lena, None)
(kp2, des2) = sift.detectAndCompute(lena_rot45, None)

# 特征点数目显示
print("=========================================")
print("=========================================")
print('lena 原图  特征点数目:', des1.shape[0])
print('lena 旋转图 特征点数目:', des2.shape[0])
print("=========================================")
print("=========================================")

# 举例说明kp中的参数信息
for i in range(2):
   print("关键点", i)
   print("数据类型:", type(kp1[i]))
   print("关键点坐标:", kp1[i].pt)
   print("邻域直径:", kp1[i].size)
   print("方向:", kp1[i].angle)
   print("所在的图像金字塔的组:", kp1[i].octave)

print("=========================================")
print("=========================================")
"""
首先对原图和旋转图进行特征匹配,即图original_lena和图lena_rot45
"""
# 绘制特征点,并显示为红色圆圈
sift_original_lena = cv2.drawKeypoints(original_lena, kp1, original_lena, color=(255, 0, 255))
sift_lena_rot45 = cv2.drawKeypoints(lena_rot45, kp2, lena_rot45, color=(255, 0, 255))

sift_cat1 = np.hstack((sift_original_lena, sift_lena_rot45))        # 对提取特征点后的图像进行横向拼接
cv2.imwrite("sift_cat1.png", sift_cat1)
print('原图与旋转图 特征点绘制图像已保存')
cv2.imshow("sift_point1", sift_cat1)
cv2.waitKey()

# 特征点匹配
# K近邻算法求取在空间中距离最近的K个数据点,并将这些数据点归为一类
start = time.time()     # 计算匹配点匹配时间
bf = cv2.BFMatcher()
matches1 = bf.knnMatch(des1, des2, k=2)
print('用于 原图和旋转图 图像匹配的所有特征点数目:', len(matches1))

# 调整ratio
# ratio=0.4:对于准确度要求高的匹配;
# ratio=0.6:对于匹配点数目要求比较多的匹配;
# ratio=0.5:一般情况下。
ratio1 = 0.5
good1 = []

for m1, n1 in matches1:
   # 如果最接近和次接近的比值大于一个既定的值,那么我们保留这个最接近的值,认为它和其匹配的点为good_match
   if m1.distance < ratio1 * n1.distance:
       good1.append([m1])

end = time.time()
print("匹配点匹配运行时间:%.4f秒" % (end-start))

# 通过对good值进行索引,可以指定固定数目的特征点进行匹配,如good[:20]表示对前20个特征点进行匹配
match_result1 = cv2.drawMatchesKnn(original_lena, kp1, lena_rot45, kp2, good1, None, flags=2)
cv2.imwrite("match_result1.png", match_result1)

print('原图与旋转图 特征点匹配图像已保存')
print("=========================================")
print("=========================================")
print("原图与旋转图匹配对的数目:", len(good1))

for i in range(2):
   print("匹配", i)
   print("数据类型:", type(good1[i][0]))
   print("描述符之间的距离:", good1[i][0].distance)
   print("查询图像中描述符的索引:", good1[i][0].queryIdx)
   print("目标图像中描述符的索引:", good1[i][0].trainIdx)

print("=========================================")
print("=========================================")
cv2.imshow("original_lena and lena_rot45 feature matching result", match_result1)
cv2.waitKey()

# 将待匹配图像通过旋转、变换等方式将其与目标图像对齐,这里使用单应性矩阵。
# 单应性矩阵有八个参数,如果要解这八个参数的话,需要八个方程,由于每一个对应的像素点可以产生2个方程(x一个,y一个),那么总共只需要四个像素点就能解出这个单应性矩阵。
if len(good1) > 4:
   ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good1]).reshape(-1, 1, 2)
   ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good1]).reshape(-1, 1, 2)
   ransacReprojThreshold = 4
   # RANSAC算法选择其中最优的四个点
   H, status =cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
   imgout = cv2.warpPerspective(lena_rot45, H, (original_lena.shape[1], original_lena.shape[0]),
                                flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)

cv2.imwrite("imgout.png", imgout)
   cv2.imshow("lena_rot45's result after transformation", imgout)
   cv2.waitKey()

3.3 程序结果

Python语言实现SIFT算法

来源:https://blog.csdn.net/qq_42856191/article/details/121306915

标签:python,SIFT,算法
0
投稿

猜你喜欢

  • MySql多表查询 事务及DCL

    2024-01-29 04:55:28
  • golang语言map全方位介绍

    2024-05-22 10:20:33
  • Python中py文件转换成exe可执行文件的方法

    2022-09-30 02:01:40
  • Golang TCP粘包拆包问题的解决方法

    2023-07-18 11:04:43
  • Python和Pycharm 环境部署详细步骤

    2022-09-25 02:25:45
  • C#如何实现对sql server数据库的增删改查

    2024-01-18 06:49:09
  • Python编程实现简易的音乐播放器基本操作

    2022-05-25 08:41:16
  • Oracle数据库opatch补丁操作流程

    2024-01-28 06:51:42
  • Python实现数字图像处理染色体计数示例

    2022-06-15 03:32:36
  • uniapp实现录音上传功能

    2024-06-07 16:00:04
  • 在asp.net中KindEditor编辑器的使用方法小结

    2023-03-11 21:13:41
  • Python多路复用selector模块的基本使用

    2021-12-17 08:43:25
  • Python实现合并excel表格的方法分析

    2022-04-24 21:30:22
  • Python图像运算之图像灰度线性变换详解

    2022-06-10 15:12:28
  • kafka监控获取指定topic的消息总量示例

    2023-09-04 01:44:48
  • php mysql PDO 查询操作的实例详解

    2023-11-14 18:32:28
  • 使用PyCharm调试程序实现过程

    2023-09-30 10:27:08
  • .NET Core读取配置文件的方法

    2024-06-05 09:31:38
  • 在ORACLE移动数据库文件

    2024-01-17 02:44:36
  • Python编写带选项的命令行程序方法

    2023-11-18 20:47:35
  • asp之家 网络编程 m.aspxhome.com