python人工智能tensorflow构建卷积神经网络CNN

作者:Bubbliiiing 时间:2023-01-09 21:49:10 

学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络。

简介

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

其主要结构分为输入层、隐含层、输出层。

在tensorboard中,其结构如图所示:

python人工智能tensorflow构建卷积神经网络CNN

对于卷积神经网络而言,其输入层、输出层与平常的卷积神经网络无异。

但其隐含层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)、全连接层(等价于传统前馈神经网络中的隐含层)。

隐含层介绍

1、卷积层

卷积将输入图像放进一组卷积滤波器,每个滤波器激活图像中的某些特征。

假设一副黑白图像为5*5的大小,像这样:

python人工智能tensorflow构建卷积神经网络CNN

利用如下卷积器进行卷积:

python人工智能tensorflow构建卷积神经网络CNN

卷积结果为:

python人工智能tensorflow构建卷积神经网络CNN

卷积过程可以提取特征,卷积神经网络是根据特征来完成分类的。

在tensorflow中,卷积层的重要函数是:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

其中:

1、input是输入量,shape是[batch, height, width, channels]。;

2、filter是使用的卷积核;

3、strides是步长,其格式[1,step,step,1],step指的是在图像卷积的每一维的步长;

4、padding:string类型的量,只能是"SAME","VALID"其中之一,SAME表示卷积前后图像面积不变。

2、池化层

池化层用于在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。

常见的池化是最大池化,最大池化指的是取出这些被卷积后的数据的最大值,就是取出其最大特征。

假设其池化窗口为2X2,步长为2。

原图像为:

python人工智能tensorflow构建卷积神经网络CNN

池化后为:

python人工智能tensorflow构建卷积神经网络CNN

在tensorflow中,池化层的重要函数是:

tf.nn.max_pool(value, ksize, strides, padding, data_format, name)

1、value:池化层的输入,一般池化层接在卷积层后面,shape是[batch, height, width, channels]。

2、ksize:池化窗口的大小,取一个四维向量,一般是[1, in_height, in_width, 1]。

3、strides:和卷积类似,窗口在每一个维度上滑动的步长,也是[1, stride,stride, 1]。

4、padding:和卷积类似,可以取’VALID’ 或者’SAME’。

这是tensorboard中卷积层和池化层的连接结构:

python人工智能tensorflow构建卷积神经网络CNN

3、全连接层

全连接层与普通神经网络的结构相同,如图所示:

python人工智能tensorflow构建卷积神经网络CNN

具体实现代码

卷积层、池化层与全连接层实现代码

def conv2d(x,W,step,pad): #用于进行卷积,x为输入值,w为卷积核
   return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad):#用于池化,x为输入值,step为步数
   return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape):#用于获得W
   initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值
   return tf.Variable(initial)
def bias_variable(shape):#获得bias
   initial = tf.constant(0.1,shape=shape)  #生成普通值
   return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
#用于添加全连接层
   layer_name = 'layer_%s'%n_layer
   with tf.name_scope(layer_name):
       with tf.name_scope("Weights"):
           Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
           tf.summary.histogram(layer_name+"/weights",Weights)
       with tf.name_scope("biases"):
           biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
           tf.summary.histogram(layer_name+"/biases",biases)
       with tf.name_scope("Wx_plus_b"):
           Wx_plus_b = tf.matmul(inputs,Weights) + biases
           tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
       if activation_function == None :
           outputs = Wx_plus_b
       else:
           outputs = activation_function(Wx_plus_b)
       print(activation_function)
       outputs = tf.nn.dropout(outputs,keep_prob)
       tf.summary.histogram(layer_name+"/outputs",outputs)
       return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
#用于生成卷积层和池化层
   layer_name = 'layer_%s'%n_layer
   with tf.name_scope(layer_name):
       with tf.name_scope("Weights"):
           W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
       with tf.name_scope("biases"):
           b_conv = bias_variable([out_z_dim])
       with tf.name_scope("conv"):
       #卷积层
           h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
       with tf.name_scope("pooling"):
       #池化层
           h_pool = max_pool_2X2(h_conv, pool_step, padding)
   return h_pool

全部代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
def conv2d(x,W,step,pad):
   return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad):
   return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape):
   initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值
   return tf.Variable(initial)
def bias_variable(shape):
   initial = tf.constant(0.1,shape=shape)  #生成普通值
   return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
   layer_name = 'layer_%s'%n_layer
   with tf.name_scope(layer_name):
       with tf.name_scope("Weights"):
           Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
           tf.summary.histogram(layer_name+"/weights",Weights)
       with tf.name_scope("biases"):
           biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
           tf.summary.histogram(layer_name+"/biases",biases)
       with tf.name_scope("Wx_plus_b"):
           Wx_plus_b = tf.matmul(inputs,Weights) + biases
           tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
       if activation_function == None :
           outputs = Wx_plus_b
       else:
           outputs = activation_function(Wx_plus_b)
       print(activation_function)
       outputs = tf.nn.dropout(outputs,keep_prob)
       tf.summary.histogram(layer_name+"/outputs",outputs)
       return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
   layer_name = 'layer_%s'%n_layer
   with tf.name_scope(layer_name):
       with tf.name_scope("Weights"):
           W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
       with tf.name_scope("biases"):
           b_conv = bias_variable([out_z_dim])
       with tf.name_scope("conv"):
           h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
       with tf.name_scope("pooling"):
           h_pool = max_pool_2X2(h_conv, pool_step, padding)
   return h_pool
def compute_accuracy(x_data,y_data):
   global prediction
   y_pre = sess.run(prediction,feed_dict={xs:x_data,keep_prob:1})
   correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))
   accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
   result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1})
   return result
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(xs,[-1,28,28,1])
h_pool1 = add_cnn_layer(x_image, in_z_dim = 1, out_z_dim = 32, n_layer = "cnn1",)
h_pool2 = add_cnn_layer(h_pool1, in_z_dim = 32, out_z_dim = 64, n_layer = "cnn2",)
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1_drop = add_layer(h_pool2_flat, 7*7*64, 1024, "layer1", activation_function = tf.nn.relu, keep_prob = keep_prob)
prediction = add_layer(h_fc1_drop, 1024, 10, "layer2", activation_function = tf.nn.softmax, keep_prob = 1)
with tf.name_scope("loss"):
   loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
   tf.summary.scalar("loss",loss)
train = tf.train.AdamOptimizer(1e-4).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
   sess.run(init)
   write = tf.summary.FileWriter("logs/",sess.graph)
   for i in range(5000):
       batch_xs,batch_ys = mnist.train.next_batch(100)
       sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:0.5})
       if i % 100 == 0:
           print(compute_accuracy(mnist.test.images,mnist.test.labels))

来源:https://blog.csdn.net/weixin_44791964/article/details/97298887

标签:tensorflow,卷积神经网络,CNN,人工智能
0
投稿

猜你喜欢

  • Java使用正则表达式判断字符串是否以字符开始

    2023-02-16 01:13:47
  • SQL Server备份和灾难恢复

    2010-07-02 12:54:00
  • 浅析Python编写函数装饰器

    2023-06-07 12:20:05
  • 用Python展示动态规则法用以解决重叠子问题的示例

    2023-02-09 02:20:36
  • Python操作串口的方法

    2021-11-24 07:09:10
  • SQL Server中读取XML文件的简单做法

    2008-12-23 15:29:00
  • Python pygame 动画游戏循环游戏时钟实现原理

    2022-07-02 06:27:27
  • 动态给表添加删除字段并同时修改它的插入更新存储过程

    2024-01-17 22:12:56
  • 详解Vue 多级组件透传新方法provide/inject

    2024-06-05 09:21:03
  • python 实现二维数组的索引、删除、拼接操作

    2021-03-01 10:28:08
  • python两种注释用法的示例

    2022-07-22 04:50:50
  • python中用ctypes模拟点击的实例讲解

    2023-10-29 23:18:42
  • javascript ajax的5种状态介绍

    2024-04-30 10:15:43
  • vue2 拖动排序 vuedraggable组件的实现

    2024-05-02 16:59:08
  • javascript禁用键盘功能键让右击及其他键无效

    2023-09-06 16:40:57
  • js友好的表单验证程序vform

    2007-08-16 13:32:00
  • ASP.NET MVC4入门教程(二):添加一个控制器

    2024-05-11 09:26:25
  • ubuntu 18.04搭建python环境(pycharm+anaconda)

    2023-09-23 20:01:56
  • tween.js缓动补间动画算法示例

    2024-05-21 10:13:40
  • SQL Server导出表到EXCEL文件的存储过程

    2009-01-06 11:24:00
  • asp之家 网络编程 m.aspxhome.com