对TensorFlow的assign赋值用法详解

作者:mustar_2017 时间:2023-03-18 22:52:56 

TensorFlow修改变量值后,需要重新赋值,assign用起来有点小技巧,就是需要需要弄个操作子,运行一下。

下面这么用是不行的


import tensorflow as tf
import numpy as np

x = tf.Variable(0)
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()
sess.run(init)

print(x.eval())

x.assign(1)
print(x.eval())

正确用法

1.


import tensorflow as tf
x = tf.Variable(0)
y = tf.assign(x, 1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print sess.run(x)
print sess.run(y)
print sess.run(x)

2.


In [212]: w = tf.Variable(12)
In [213]: w_new = w.assign(34)

In [214]: with tf.Session() as sess:
 ...:  sess.run(w_new)
 ...:  print(w_new.eval())

# output
34

3.


import tensorflow as tf
x = tf.Variable(0)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(x)) # Prints 0.
x.load(1, sess)
print(sess.run(x)) # Prints 1.

我的方法


import numpy as np #这是Python的一种开源的数值计算扩展,非常强大
import tensorflow as tf #导入tensorflow

##构造数据##
x_data=np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的值
y_data=x_data*0.1+0.3 #定义方程式y=x_data*A+B
##-------##

##建立TensorFlow神经计算结构##
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases=tf.Variable(tf.zeros([1]))  
y=weight*x_data+biases

w1=weight*2

loss=tf.reduce_mean(tf.square(y-y_data)) #判断与正确值的差距
optimizer=tf.train.GradientDescentOptimizer(0.5) #根据差距进行反向传播修正参数
train=optimizer.minimize(loss) #建立训练器

init=tf.global_variables_initializer() #初始化TensorFlow训练结构
#sess=tf.Session() #建立TensorFlow训练会话
sess = tf.InteractiveSession()
sess.run(init)  #将训练结构装载到会话中
print('weight',weight.eval())
for step in range(400): #循环训练400次
 sess.run(train) #使用训练器根据训练结构进行训练
 if step%20==0: #每20次打印一次训练结果
 print(step,sess.run(weight),sess.run(biases)) #训练次数,A值,B值

print(sess.run(loss))  
print('weight new',weight.eval())

#wop=weight.assign([3])
#wop.eval()
weight.load([1],sess)
print('w1',w1.eval())

来源:https://blog.csdn.net/mustar_2017/article/details/79336679

标签:TensorFlow,assign,赋值
0
投稿

猜你喜欢

  • Python二分查找+字符串模板+textwrap模块,

    2023-03-12 11:12:44
  • SSM框架把日志信息保存到数据库过程详解

    2024-01-19 12:56:27
  • 实例详解Python中的numpy.abs和abs函数

    2023-03-09 08:06:38
  • 基于Python绘制一个摸鱼倒计时界面

    2022-09-02 03:03:26
  • python+Django+apache的配置方法详解

    2021-02-18 06:39:06
  • 利用python实现凯撒密码加解密功能

    2023-06-20 01:59:16
  • Python with语句和过程抽取思想

    2023-08-16 08:08:28
  • 解决PHP 7编译安装错误:cannot stat ‘phar.phar’: No such file or directory

    2023-09-05 06:07:44
  • C#连接SQL Server数据库的实例讲解

    2024-01-28 04:14:01
  • Python实现用户登录并且输入错误三次后锁定该用户

    2022-07-28 12:02:47
  • Python-split()函数实例用法讲解

    2023-12-12 07:13:20
  • python使用Random随机生成列表的方法实例

    2021-08-12 12:08:54
  • 如何利用python制作时间戳转换工具详解

    2021-11-23 21:21:41
  • 如何在Unix系统环境下安装MySQL数据库

    2009-01-04 13:09:00
  • 在pycharm上mongodb配置及可视化设置方法

    2022-12-04 07:05:31
  • Django 查询数据库并返回页面的例子

    2024-01-15 20:08:37
  • python清空命令行方式

    2023-12-08 09:50:35
  • Python中使用PDB库调试程序

    2022-02-24 11:25:49
  • opencv实现矿石图片检测矿石数量

    2021-08-26 02:17:39
  • 浅谈Transact-SQL

    2024-01-23 20:13:22
  • asp之家 网络编程 m.aspxhome.com