用Python实现最速下降法求极值的方法

作者:lxy孙悟空 时间:2023-05-04 20:03:34 

对于一个多元函数用Python实现最速下降法求极值的方法,用最速下降法(又称梯度下降法)求其极小值的迭代格式为

用Python实现最速下降法求极值的方法

其中用Python实现最速下降法求极值的方法为负梯度方向,即最速下降方向,αkαk为搜索步长。

一般情况下,最优步长αkαk的确定要用到线性搜索技术,比如精确线性搜索,但是更常用的是不精确线性搜索,主要是Goldstein不精确线性搜索和Wolfe法线性搜索。

为了调用的方便,编写一个Python文件,里面存放线性搜索的子函数,命名为linesearch.py,这里先只编写了Goldstein线性搜索的函数,关于Goldstein原则,可以参看最优化课本。

线性搜索的代码如下(使用版本为Python3.3):


'''
线性搜索子函数
'''

import numpy as np
import random

def goldsteinsearch(f,df,d,x,alpham,rho,t):

flag=0

a=0
 b=alpham
 fk=f(x)
 gk=df(x)

phi0=fk
 dphi0=np.dot(gk,d)

alpha=b*random.uniform(0,1)

while(flag==0):
   newfk=f(x+alpha*d)
   phi=newfk
   if(phi-phi0<=rho*alpha*dphi0):
     if(phi-phi0>=(1-rho)*alpha*dphi0):
       flag=1
     else:
       a=alpha
       b=b
       if(b<alpham):
         alpha=(a+b)/2
       else:
         alpha=t*alpha
   else:
     a=a
     b=alpha
     alpha=(a+b)/2
 return alpha

上述函数的输入参数主要包括一个多元函数f,其导数df,当前迭代点x和当前搜索方向d,返回值是根据Goldstein准则确定的搜索步长。

我们仍以Rosenbrock函数为例,即有

用Python实现最速下降法求极值的方法

于是可得函数的梯度为

用Python实现最速下降法求极值的方法

最速下降法的代码如下:


"""
最速下降法
Rosenbrock函数
函数 f(x)=100*(x(2)-x(1).^2).^2+(1-x(1)).^2
梯度 g(x)=(-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)),200*(x(2)-x(1)^2))^(T)
"""

import numpy as np
import matplotlib.pyplot as plt
import random
import linesearch
from linesearch import goldsteinsearch

def rosenbrock(x):
 return 100*(x[1]-x[0]**2)**2+(1-x[0])**2

def jacobian(x):
 return np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]),200*(x[1]-x[0]**2)])

X1=np.arange(-1.5,1.5+0.05,0.05)
X2=np.arange(-3.5,2+0.05,0.05)
[x1,x2]=np.meshgrid(X1,X2)
f=100*(x2-x1**2)**2+(1-x1)**2; # 给定的函数
plt.contour(x1,x2,f,20) # 画出函数的20条轮廓线

def steepest(x0):

print('初始点为:')
 print(x0,'\n')  
 imax = 20000
 W=np.zeros((2,imax))
 W[:,0] = x0
 i = 1  
 x = x0
 grad = jacobian(x)
 delta = sum(grad**2) # 初始误差

while i<imax and delta>10**(-5):
   p = -jacobian(x)
   x0=x
   alpha = goldsteinsearch(rosenbrock,jacobian,p,x,1,0.1,2)
   x = x + alpha*p
   W[:,i] = x
   grad = jacobian(x)
   delta = sum(grad**2)
   i=i+1

print("迭代次数为:",i)
 print("近似最优解为:")
 print(x,'\n')  
 W=W[:,0:i] # 记录迭代点
 return W

x0 = np.array([-1.2,1])
W=steepest(x0)

plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 画出迭代点收敛的轨迹
plt.show()

为了实现不同文件中函数的调用,我们先用import函数导入了线性搜索的子函数,也就是下面的2行代码


import linesearch
from linesearch import goldsteinsearch

当然,如果把定义goldsteinsearch函数的代码直接放到程序里面,就不需要这么麻烦了,但是那样的话,不仅会使程序显得很长,而且不便于goldsteinsearch函数的重用。

此外,Python对函数式编程也支持的很好,在定义goldsteinsearch函数时,可以允许抽象的函数f,df作为其输入参数,只要在调用时实例化就可以了。与Matlab不同的是,传递函数作为参数时,Python是不需要使用@将其变为函数句柄的。

运行结果为


初始点为:

[-1.2 1. ]

迭代次数为: 1504

近似最优解为:

[ 1.00318532 1.00639618]

迭代点的轨迹为

用Python实现最速下降法求极值的方法

由于在线性搜索子程序中使用了随机函数,初始搜索点是随机产生的,因此每次运行的结果不太相同,比如再运行一次程序,得到


初始点为:
[-1.2 1. ]

迭代次数为: 1994

近似最优解为:
[ 0.99735222 0.99469882]

所得图像为

用Python实现最速下降法求极值的方法

来源:https://blog.csdn.net/u012705410/article/details/47254437

标签:Python,最速下降法,极值
0
投稿

猜你喜欢

  • matplotlib绘制符合论文要求的图片实例(必看篇)

    2023-08-12 08:08:39
  • mysql索引对排序的影响实例分析

    2024-01-18 16:52:29
  • python中如何使用insert函数

    2023-08-02 17:04:43
  • Python3安装模块报错Microsoft Visual C++ 14.0 is required的解决方法

    2021-02-14 00:18:22
  • Python抓取数据到可视化全流程的实现过程

    2021-06-14 02:03:28
  • 利用Python为女神制作一个专属网站

    2021-07-26 23:16:30
  • Python人工智能之波士顿房价数据分析

    2021-09-23 19:43:35
  • 通过Django Admin+HttpRunner1.5.6实现简易接口测试平台

    2023-05-24 19:07:45
  • 原生js写的放大镜效果

    2024-04-30 08:51:13
  • 最强大最好最全的javascript 验证表单的例子

    2010-03-14 11:26:00
  • Golang 函数执行时间统计装饰器的一个实现详解

    2024-05-09 09:46:22
  • Python基于Tkinter模块实现的弹球小游戏

    2022-11-25 15:32:16
  • 网页广告 Banner 设计图文手册

    2007-10-18 19:56:00
  • 轻松实现javascript数据双向绑定

    2024-03-26 20:23:50
  • asp上传文件自动重命名方法

    2007-08-24 09:46:00
  • php教程之phpize使用方法

    2024-05-02 17:16:46
  • Python使用selenium实现网页用户名 密码 验证码自动登录功能

    2023-11-14 18:58:45
  • 利用python调用摄像头的实例分析

    2022-01-03 22:10:14
  • 微信跳一跳php代码实现

    2024-06-05 09:46:20
  • 二维码的生成细节和原理

    2023-02-28 16:36:01
  • asp之家 网络编程 m.aspxhome.com