只用50行Python代码爬取网络美女高清图片

作者:COS0度 时间:2023-08-29 07:45:51 

一、技术路线

requests:网页请求
BeautifulSoup:解析html网页
re:正则表达式,提取html网页信息
os:保存文件


import re
import requests
import os
from bs4 import BeautifulSoup

二、获取网页信息

常规操作,获取网页信息的固定格式,返回的字符串格式的网页内容,其中headers参数可模拟人为的操作,‘欺骗'网站不被发现


def getHtml(url):  #固定格式,获取html内容
   headers = {
       'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36'
   }  #模拟用户操作
   try:
       r = requests.get(url, headers=headers)
       r.raise_for_status()
       r.encoding = r.apparent_encoding
       return r.text
   except:
       print('网络状态错误')

三、网页爬取分析

右键单击图片区域,选择 ‘审查元素' ,可以查看当前网页图片详情链接,我就满心欢喜的复制链接打开保存,看看效果,结果一张图片只有60几kb,这就是缩略图啊,不清晰,果断舍弃。。。

只用50行Python代码爬取网络美女高清图片
只用50行Python代码爬取网络美女高清图片

没有办法,只有点击找到详情页链接,再进行单独爬取。

空白右键,‘查看页面源代码',把刚刚复制的缩略图链接复制查找快速定位,分析所有图片详情页链接存在div标签,并且class=‘list' 唯一,因此可以使用BeautifulSoup提取此标签。并且发现图片详情页链接在herf=后面(同时我们注意到有部分无效链接也在div标签中,观察它们异同,发现无效链接存在'https'字样,因此可在代码中依据此排出无效链接,对应第4条中的函数代码),只需提取出来再在前面加上网页首页链接即可打开,并且右键图片,‘审查元素',复制链接下载的图片接近1M,表示是高清图片了,到这一步我们只需调用下载保存函数即可保存图片

只用50行Python代码爬取网络美女高清图片

只用50行Python代码爬取网络美女高清图片

四、网页详情页链接获取

根据第3条分析的情况,首要目标是将每页的每个图片的详情页链接给爬取下来,为后续的高清图片爬取做准备,这里直接定义函数def getUrlList(url):


def getUrlList(url):  # 获取图片链接
   url_list = []  #存储每张图片的url,用于后续内容爬取
   demo = getHtml(url)
   soup = BeautifulSoup(demo,'html.parser')
   sp = soup.find_all('div', class_="list") #class='list'在全文唯一,因此作为锚,获取唯一的div标签;注意,这里的网页源代码是class,但是python为了和class(类)做区分,在最后面添加了_
   nls = re.findall(r'a href="(.*?)" rel="external nofollow"  rel="external nofollow" ', str(sp)) #用正则表达式提取链接
   for i in nls:
       if 'https' in i: #因所有无效链接中均含有'https'字符串,因此直接剔除无效链接(对应第3条的分析)
           continue
       url_list.append('http://www.netbian.com' + i) #在获取的链接中添加前缀,形成完整的有效链接
   return url_list

五、依据图片链接保存图片

同理,在第4条中获取了每个图片的详情页链接后,打开,右键图片'审查元素',复制链接即可快速定位,然后保存图片


def fillPic(url,page):
   pic_url = getUrlList(url) #调用函数,获取当前页的所有图片详情页链接
   path = './美女'  # 保存路径
   for p in range(len(pic_url)):
       pic = getHtml(pic_url[p])
       soup = BeautifulSoup(pic, 'html.parser')
       psoup = soup.find('div', class_="pic") #class_="pic"作为锚,获取唯一div标签;注意,这里的网页源代码是class,但是python为了和class(类)做区分,在最后面添加了_
       picUrl = re.findall(r'src="(.*?)"', str(psoup))[0] #利用正则表达式获取详情图片链接,因为这里返回的是列表形式,所以取第一个元素(只有一个元素,就不用遍历的方式了)
       pic = requests.get(picUrl).content #打开图片链接,并以二进制形式返回(图片,声音,视频等要以二进制形式打开)
       image_name ='美女' + '第{}页'.format(page) + str(p+1) + '.jpg' #给图片预定名字
       image_path = path + '/' + image_name #定义图片保存的地址
       with open(image_path, 'wb') as f: #保存图片
           f.write(pic)
           print(image_name, '下载完毕!!!')

六、main()函数

经过前面的主体框架搭建完毕之后,对整个程序做一个前置化,直接上代码

在这里第1页的链接是http://www.netbian.com/meinv/

第2页的链接是http://www.netbian.com/meinv/index_2.htm

并且后续页面是在第2页的基础上仅改变最后的数字,因此在写代码的时候要注意区分第1页和后续页面的链接,分别做处理;同时在main()函数还增加了自定义爬取页数的功能,详见代码

只用50行Python代码爬取网络美女高清图片


def main():
   n = input('请输入要爬取的页数:')
   url = 'http://www.netbian.com/meinv/'  # 资源的首页,可根据自己的需求查看不同分类,自定义改变目录,爬取相应资源
   if not os.path.exists('./美女'):  # 如果不存在,创建文件目录
       os.mkdir('./美女/')
   page = 1
   fillPic(url, page)  # 爬取第一页,因为第1页和后续页的链接的区别,单独处理第一页的爬取
   if int(n) >= 2: #爬取第2页之后的资源
       ls = list(range(2, 1 + int(n)))
       url = 'http://www.netbian.com/meinv/'
       for i in ls: #用遍历的方法对输入的需求爬取的页面做分别爬取处理
           page = str(i)
           url_page = 'http://www.netbian.com/meinv/'
           url_page += 'index_' + page + '.htm' #获取第2页后的每页的详情链接
           fillPic(url, page) #调用fillPic()函数

七、完整代码

最后再调用main(),输入需要爬取的页数,即可开始爬取,完整代码如下


import re
import requests
import os
from bs4 import BeautifulSoup

def getHtml(url):  #固定格式,获取html内容
   headers = {
       'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36'
   }  #模拟用户操作
   try:
       r = requests.get(url, headers=headers)
       r.raise_for_status()
       r.encoding = r.apparent_encoding
       return r.text
   except:
       print('网络状态错误')

def getUrlList(url):  # 获取图片链接
   url_list = []  #存储每张图片的url,用于后续内容爬取
   demo = getHtml(url)
   soup = BeautifulSoup(demo,'html.parser')
   sp = soup.find_all('div', class_="list") #class='list'在全文唯一,因此作为锚,获取唯一的div标签;注意,这里的网页源代码是class,但是python为了和class(类)做区分,在最后面添加了_
   nls = re.findall(r'a href="(.*?)" rel="external nofollow"  rel="external nofollow" ', str(sp)) #用正则表达式提取链接
   for i in nls:
       if 'https' in i: #因所有无效链接中均含有'https'字符串,因此直接剔除无效链接(对应第3条的分析)
           continue
       url_list.append('http://www.netbian.com' + i) #在获取的链接中添加前缀,形成完整的有效链接
   return url_list

def fillPic(url,page):
   pic_url = getUrlList(url) #调用函数,获取当前页的所有图片详情页链接
   path = './美女'  # 保存路径
   for p in range(len(pic_url)):
       pic = getHtml(pic_url[p])
       soup = BeautifulSoup(pic, 'html.parser')
       psoup = soup.find('div', class_="pic") #class_="pic"作为锚,获取唯一div标签;注意,这里的网页源代码是class,但是python为了和class(类)做区分,在最后面添加了_
       picUrl = re.findall(r'src="(.*?)"', str(psoup))[0] #利用正则表达式获取详情图片链接,因为这里返回的是列表形式,所以取第一个元素(只有一个元素,就不用遍历的方式了)
       pic = requests.get(picUrl).content #打开图片链接,并以二进制形式返回(图片,声音,视频等要以二进制形式打开)
       image_name ='美女' + '第{}页'.format(page) + str(p+1) + '.jpg' #给图片预定名字
       image_path = path + '/' + image_name #定义图片保存的地址
       with open(image_path, 'wb') as f: #保存图片
           f.write(pic)
           print(image_name, '下载完毕!!!')

def main():
   n = input('请输入要爬取的页数:')
   url = 'http://www.netbian.com/meinv/'  # 资源的首页,可根据自己的需求查看不同分类,自定义改变目录,爬取相应资源
   if not os.path.exists('./美女'):  # 如果不存在,创建文件目录
       os.mkdir('./美女/')
   page = 1
   fillPic(url, page)  # 爬取第一页,因为第1页和后续页的链接的区别,单独处理第一页的爬取
   if int(n) >= 2: #爬取第2页之后的资源
       ls = list(range(2, 1 + int(n)))
       url = 'http://www.netbian.com/meinv/'
       for i in ls: #用遍历的方法对输入的需求爬取的页面做分别爬取处理
           page = str(i)
           url_page = 'http://www.netbian.com/meinv/'
           url_page += 'index_' + page + '.htm' #获取第2页后的每页的详情链接
           fillPic(url_page, page) #调用fillPic()函数

main()

来源:https://blog.csdn.net/cos0du/article/details/116273972

标签:Python,爬取,高清图片
0
投稿

猜你喜欢

  • Python 离线工作环境搭建的方法步骤

    2023-08-30 01:59:21
  • Bootstrap响应式侧边栏改进版

    2023-08-17 02:26:10
  • SQL对时间处理的语句小结

    2011-12-01 07:53:04
  • 关于utf-8格式中截取中英文字符串长度无效的问题

    2008-11-25 14:00:00
  • mysql部分替换sql语句分享

    2024-01-23 18:17:35
  • Python切片操作实例分析

    2022-05-02 17:49:25
  • Python3 适合初学者学习的银行账户登录系统实例

    2021-06-16 05:09:22
  • Python argparse中的action=store_true用法小结

    2023-07-31 22:35:02
  • python仿evething的文件搜索器实例代码

    2022-05-05 09:05:15
  • Python编程实现简单的微博自动点赞

    2021-05-14 06:43:12
  • AJAX在GET中文的时候解决乱码的方法

    2007-11-04 13:04:00
  • MySQL数据类型全解析

    2024-01-27 07:44:58
  • 深入理解python中函数传递参数是值传递还是引用传递

    2022-02-21 10:08:33
  • python实现全盘扫描搜索功能的方法

    2022-10-29 14:43:57
  • 利用python和ffmpeg 批量将其他图片转换为.yuv格式的方法

    2023-07-27 11:51:43
  • python删除服务器文件代码示例

    2023-07-26 15:44:08
  • Django细致讲解多对多使用through自定义中间表方法

    2022-12-12 17:22:41
  • Vue编写多地区选择组件

    2024-06-07 15:24:40
  • 如何使用Python的Requests包实现模拟登陆

    2022-10-07 03:12:26
  • 使用Go语言创建静态文件服务器问题

    2024-04-26 17:17:55
  • asp之家 网络编程 m.aspxhome.com