hadoop二次排序的原理和实现方法

作者:白马不是马 时间:2023-01-16 22:42:31 

默认情况下,Map输出的结果会对Key进行默认的排序,但是有时候需要对Key排序的同时还需要对Value进行排序,这时候就要用到二次排序了。下面我们来说说二次排序

1、二次排序原理

我们把二次排序分为以下几个阶段

Map起始阶段

在Map阶段,使用job.setInputFormatClass()定义的InputFormat,将输入的数据集分割成小数据块split,同时InputFormat提供一个RecordReader的实现。在这里我们使用的是TextInputFormat,它提供的RecordReader会将文本的行号作为Key,这一行的文本作为Value。这就是自定 Mapper的输入是<LongWritable,Text> 的原因。然后调用自定义Mapper的map方法,将一个个<LongWritable,Text>键值对输入给Mapper的map方法

Map最后阶段

在Map阶段的最后,会先调用job.setPartitionerClass()对这个Mapper的输出结果进行分区,每个分区映射到一个Reducer。每个分区内又调用job.setSortComparatorClass()设置的Key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass()设置 Key比较函数类,则使用Key实现的compareTo()方法

Reduce阶段

在Reduce阶段,reduce()方法接受所有映射到这个Reduce的map输出后,也会调用job.setSortComparatorClass()方法设置的Key比较函数类,对所有数据进行排序。然后开始构造一个Key对应的Value迭代器。这时就要用到分组,使用 job.setGroupingComparatorClass()方法设置分组函数类。只要这个比较器比较的两个Key相同,它们就属于同一组,它们的 Value放在一个Value迭代器,而这个迭代器的Key使用属于同一个组的所有Key的第一个Key。最后就是进入Reducer的 reduce()方法,reduce()方法的输入是所有的Key和它的Value迭代器,同样注意输入与输出的类型必须与自定义的Reducer中声明的一致

接下来我们通过示例,可以很直观的了解二次排序的原理

输入文件 sort.txt 内容为

40 20 40 10 40 30 40 5 30 30 30 20 30 10 30 40 50 20 50 50 50 10 50 60

输出文件的内容(从小到大排序)如下

30 10 30 20 30 30 30 40 -------- 40 5 40 10 40 20 40 30 -------- 50 10 50 20 50 50 50 60

从输出的结果可以看出Key实现了从小到大的排序,同时相同Key的Value也实现了从小到大的排序,这就是二次排序的结果

2、二次排序的具体流程

在本例中要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair ,它有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。二次排序的流程分为以下几步。

在本例中要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair ,它有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。二次排序的流程分为以下几步。

1、自定义 key

所有自定义的key应该实现接口WritableComparable,因为它是可序列化的并且可比较的。WritableComparable 的内部方法如下所示


// 反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException

// 序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out)

// key的比较
public int compareTo(IntPair o)

// 默认的分区类 HashPartitioner,使用此方法
public int hashCode()

// 默认实现
public boolean equals(Object right)

2、自定义分区

自定义分区函数类FirstPartitioner,是key的第一次比较,完成对所有key的排序。

public static class FirstPartitioner extends Partitioner< IntPair,IntWritable>

在job中使用setPartitionerClasss()方法设置Partitioner

job.setPartitionerClasss(FirstPartitioner.Class);

3、Key的比较类

这是Key的第二次比较,对所有的Key进行排序,即同时完成IntPair中的first和second排序。该类是一个比较器,可以通过两种方式实现。

1) 继承WritableComparator。

public static class KeyComparator extends WritableComparator

必须有一个构造函数,并且重载以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 实现接口 RawComparator。

上面两种实现方式,在Job中,可以通过setSortComparatorClass()方法来设置Key的比较类。

job.setSortComparatorClass(KeyComparator.Class);

注意:如果没有使用自定义的SortComparator类,则默认使用Key中compareTo()方法对Key排序。

4、定义分组类函数

在Reduce阶段,构造一个与 Key 相对应的 Value 迭代器的时候,只要first相同就属于同一个组,放在一个Value迭代器。定义这个比较器,可以有两种方式。

1) 继承 WritableComparator。

public static class GroupingComparator extends WritableComparator

必须有一个构造函数,并且重载以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 实现接口 RawComparator。

上面两种实现方式,在 Job 中,可以通过 setGroupingComparatorClass()方法来设置分组类。

job.setGroupingComparatorClass(GroupingComparator.Class);

另外注意的是,如果reduce的输入与输出不是同一种类型,则 Combiner和Reducer 不能共用 Reducer 类,因为

Combiner 的输出是 reduce 的输入。除非重新定义一个Combiner。

3、代码实现

Hadoop的example包中自带了一个MapReduce的二次排序算法,下面对 example包中的二次排序进行改进


package com.buaa;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/**
* @ProjectName SecondarySort
* @PackageName com.buaa
* @ClassName IntPair
* @Description 将示例数据中的key/value封装成一个整体作为Key,同时实现 WritableComparable接口并重写其方法
* @Author 刘吉超
* @Date 2016-06-07 22:31:53
*/
public class IntPair implements WritableComparable<IntPair>{
 private int first;
 private int second;
 public IntPair(){
 }
 public IntPair(int left, int right){
   set(left, right);
 }
 public void set(int left, int right){
   first = left;
   second = right;
 }
 @Override
 public void readFields(DataInput in) throws IOException{
   first = in.readInt();
   second = in.readInt();
 }
 @Override
 public void write(DataOutput out) throws IOException{
   out.writeInt(first);
   out.writeInt(second);
 }
 @Override
 public int compareTo(IntPair o)
 {
   if (first != o.first){
     return first < o.first ? -1 : 1;
   }else if (second != o.second){
     return second < o.second ? -1 : 1;
   }else{
     return 0;
   }
 }
 @Override
 public int hashCode(){
   return first * 157 + second;
 }
 @Override
 public boolean equals(Object right){
   if (right == null)
     return false;
   if (this == right)
     return true;
   if (right instanceof IntPair){
     IntPair r = (IntPair) right;
     return r.first == first && r.second == second;
   }else{
     return false;
   }
 }
 public int getFirst(){
   return first;
 }
 public int getSecond(){
   return second;
 }
}
package com.buaa;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/**
* @ProjectName SecondarySort
* @PackageName com.buaa
* @ClassName SecondarySort
* @Description TODO
* @Author 刘吉超
* @Date 2016-06-07 22:40:37
*/
@SuppressWarnings("deprecation")
public class SecondarySort {
 public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable> {
   public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
     String line = value.toString();
     StringTokenizer tokenizer = new StringTokenizer(line);
     int left = 0;
     int right = 0;
     if (tokenizer.hasMoreTokens()) {
       left = Integer.parseInt(tokenizer.nextToken());
       if (tokenizer.hasMoreTokens())
         right = Integer.parseInt(tokenizer.nextToken());
       context.write(new IntPair(left, right), new IntWritable(right));
     }
   }
 }
 /*
  * 自定义分区函数类FirstPartitioner,根据 IntPair中的first实现分区
  */
 public static class FirstPartitioner extends Partitioner<IntPair, IntWritable>{
   @Override
   public int getPartition(IntPair key, IntWritable value,int numPartitions){
     return Math.abs(key.getFirst() * 127) % numPartitions;
   }
 }
 /*
  * 自定义GroupingComparator类,实现分区内的数据分组
  */
 @SuppressWarnings("rawtypes")
 public static class GroupingComparator extends WritableComparator{
   protected GroupingComparator(){
     super(IntPair.class, true);
   }
   @Override
   public int compare(WritableComparable w1, WritableComparable w2){
     IntPair ip1 = (IntPair) w1;
     IntPair ip2 = (IntPair) w2;
     int l = ip1.getFirst();
     int r = ip2.getFirst();
     return l == r ? 0 : (l < r ? -1 : 1);
   }
 }
 public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable> {
   public void reduce(IntPair key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
     for (IntWritable val : values) {
       context.write(new Text(Integer.toString(key.getFirst())), val);
     }
   }
 }
 public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
   // 读取配置文件
   Configuration conf = new Configuration();
   // 判断路径是否存在,如果存在,则删除  
   Path mypath = new Path(args[1]);
   FileSystem hdfs = mypath.getFileSystem(conf);
   if (hdfs.isDirectory(mypath)) {
     hdfs.delete(mypath, true);
   }
   Job job = new Job(conf, "secondarysort");
   // 设置主类
   job.setJarByClass(SecondarySort.class);
   // 输入路径
   FileInputFormat.setInputPaths(job, new Path(args[0]));
   // 输出路径
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   // Mapper
   job.setMapperClass(Map.class);
   // Reducer
   job.setReducerClass(Reduce.class);
   // 分区函数
   job.setPartitionerClass(FirstPartitioner.class);
   // 本示例并没有自定义SortComparator,而是使用IntPair中compareTo方法进行排序 job.setSortComparatorClass();
   // 分组函数
   job.setGroupingComparatorClass(GroupingComparator.class);
   // map输出key类型
   job.setMapOutputKeyClass(IntPair.class);
   // map输出value类型
   job.setMapOutputValueClass(IntWritable.class);
   // reduce输出key类型
   job.setOutputKeyClass(Text.class);
   // reduce输出value类型
   job.setOutputValueClass(IntWritable.class);
   // 输入格式
   job.setInputFormatClass(TextInputFormat.class);
   // 输出格式
   job.setOutputFormatClass(TextOutputFormat.class);
   System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

总结

以上所述是小编给大家介绍的hadoop二次排序的原理和实现方法,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

来源:https://blog.csdn.net/kuodannie1668/article/details/82218205

标签:hadoop,排序
0
投稿

猜你喜欢

  • python 可视化库PyG2Plot的使用

    2022-10-14 05:22:17
  • 教你用python实现自动回复QQ消息(不到60行)

    2021-05-17 06:19:20
  • JS使用百度地图API自动获取地址和经纬度操作示例

    2024-04-23 09:31:24
  • Python lambda表达式filter、map、reduce函数用法解析

    2022-03-30 03:52:31
  • Django模板Templates使用方法详解

    2023-04-22 07:40:47
  • 感知器基础原理及python实现过程详解

    2023-11-07 16:24:35
  • 利用python实现.dcm格式图像转为.jpg格式

    2021-08-28 04:16:35
  • 支持在线写SQL的Oracle学习免费网站推荐!(个人常使用)

    2023-07-24 09:06:51
  • 实用的Go语言开发工具及使用示例

    2024-04-26 17:25:25
  • 从其他电脑访问本机的Mysql的设置方法

    2024-01-17 10:25:57
  • python ansible服务及剧本编写

    2022-11-18 02:51:20
  • Sqlserver 常用日期时间函数

    2024-01-16 04:35:44
  • 解决Pandas的DataFrame输出截断和省略的问题

    2021-10-28 10:22:19
  • python在windows和linux下获得本机本地ip地址方法小结

    2023-12-18 16:52:03
  • pandas 数据归一化以及行删除例程的方法

    2022-05-23 09:11:23
  • xhtml有哪些块级元素

    2009-12-06 11:58:00
  • 关于Python面向对象编程的知识点总结

    2021-06-21 18:15:43
  • JavaScript中的全局对象介绍

    2024-04-22 22:41:29
  • Python动刷新抢12306火车票的代码(附源码)

    2021-04-27 08:13:24
  • 支持png透明图片的php生成缩略图类分享

    2023-11-18 07:26:13
  • asp之家 网络编程 m.aspxhome.com